Major genetic study identifies clearest link yet to obesity risk

April 12, 2007
Major genetic study identifies clearest link yet to obesity risk

Scientists have identified the most clear genetic link yet to obesity in the general population as part of a major study of diseases funded by the Wellcome Trust, the UK's largest medical research charity. People with two copies of a particular gene variant have a 70% higher risk of being obese than those with no copies.

Obesity is a major cause of disease, associated with an increased risk of type 2 diabetes, heart disease and cancer. It is typically measured using body mass index (BMI). As a result of reduced physical activity and increased food consumption, the prevalence of obesity is increasing worldwide. According to the 2001 Health Survey for England, over a fifth of males and a similar proportion of females aged 16 and over in England were classified as obese. Half of men and a third of women were classified as overweight.

Scientists from the Peninsula Medical School, Exeter, and the University of Oxford first identified a genetic link to obesity through a genome-wide study of 2,000 people with type 2 diabetes and 3,000 controls. This study was part of the Wellcome Trust Case Control Consortium, one of the biggest projects ever undertaken to identify the genetic variations that may predispose people to or protect them from major diseases. Through this genome-wide study, the researchers identified a strong association between an increase in BMI and a variation, or "allele", of the gene FTO. Their findings are published online today in the journal Science.

The researchers then tested a further 37,000 samples for this gene from Bristol, Dundee and Exeter as well as a number of other regions in the UK and Finland.

The study found that people carrying one copy of the FTO allele have a 30% increased risk of being obese compared to a person with no copies. However, a person carrying two copies of the allele has a 70% increased risk of being obese, being on average 3kg heavier than a similar person with no copies. Amongst white Europeans, approximately one in six people carry both copies of the allele.

"As a nation, we are eating more but doing less exercise, and so the average weight is increasing, but within the population some people seem to put on more weight than others," explains Professor Andrew Hattersley from the Peninsula Medical School. "Our findings suggest a possible answer to someone who might ask 'I eat the same and do as much exercise as my friend next door, so why am I fatter?' There is clearly a component to obesity that is genetic."

The researchers currently do not know why people with copies of the FTO allele have an increased BMI and rates of obesity.

"Even though we have yet to fully understand the role played by the FTO gene in obesity, our findings are a source of great excitement," says Professor Mark McCarthy from the University of Oxford. "By identifying this genetic link, it should be possible to improve our understanding of why some people are more obese, with all the associated implications such as increased risk of diabetes and heart disease. New scientific insights will hopefully pave the way for us to explore novel ways of treating this condition."

The findings were welcomed by Dr Mark Walport, Director of the Wellcome Trust.

"This is an exciting piece of work that illustrates why it was so important to sequence the human genome," says Dr Walport. "Obesity is one of the most challenging problems for public health in the UK. The discovery of a gene that influences the development of obesity in the general population provides a new tool for understanding how some people appear to gain weight more easily than others. This discovery, along with further results expected from the Wellcome Trust Case Control Consortium later this year, will open up a wealth of new avenues to understand and treat common diseases."

The FTO gene was first discovered whilst studying the DNA of a cohort of patients with type 2 diabetes. The risk of developing type 2 diabetes increases significantly for obese people. Through its effect on BMI, having one copy of the FTO allele increases the risk of developing type 2 diabetes by 25%, having two by 50%.

"We welcome this result, which holds promise for tackling rising levels of obesity and the associated risk of developing type 2 diabetes," says Professor Simon Howell, Chair of Diabetes UK, which funded the original collection of samples from people with diabetes. "The discovery has been possible not only because of exemplary team work of scientists from a large number of institutions but also because of the cooperation of the 5,000 diabetes patients and 37,000 people without diabetes who gave blood samples for the study."

Source: University of Bristol

Explore further: LDL cholesterol found to be the main modifiable predictor of atherosclerosis in individuals with no risk factor

Related Stories

LDL cholesterol found to be the main modifiable predictor of atherosclerosis in individuals with no risk factor

December 11, 2017
LDL cholesterol (LDL-C), known as 'bad' cholesterol, is the underlying reason why many apparently healthy individuals have heart attacks or strokes during middle age despite not having cardiovascular risk factors such as ...

Rush to treat liver patients causing more harm than good

December 11, 2017
Doctors risk overdiagnosing the most common and fastest-growing liver condition, exposing patients to harmful tests, according to a study published today.

Link between diabetes, antibiotic use called into question

December 5, 2017
(HealthDay)—Previous findings that systemic use of antibiotics increases the risk of diabetes may actually be explained by clinical and lifestyle factors, according to a study published online Nov. 20 in Diabetes, Obesity ...

Study suggests hot flashes could be precursor to diabetes

December 6, 2017
Hot flashes, undoubtedly the most common symptom of menopause, are not just uncomfortable and inconvenient, but numerous studies demonstrate they may increase the risk of serious health problems, including heart disease. ...

Researchers find genes may 'snowball' obesity

December 7, 2017
There are nine genes that make you gain more weight if you already have a high body mass index, McMaster University researchers have found.

Obesity prevented in mice fed high-fat diet

December 5, 2017
Researchers at Washington University School of Medicine in St. Louis have identified a way to prevent fat cells from growing larger, a process that leads to weight gain and obesity. By activating a pathway in fat cells in ...

Recommended for you

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.