Reversing cancer cells to normal cells

April 29, 2007

A Northwestern University scientist describes new research that used an innovative experimental approach to provide unique insights into how scientists can change human metastatic melanoma cells back to normal-like skin cells -- by exposing the tumor cells to the embryonic microenvironment of human embryonic stem cells, the zebra fish and the chick embryo.

In earlier work, Northwestern University scientist Mary J.C. Hendrix and colleagues discovered that aggressive melanoma cells (but not normal skin cells nor less aggressive melanoma cells) contain specific proteins similar to those found in embryonic stem cells. This groundbreaking work led to the first molecular classification of malignant melanoma and may help to explain how, by becoming more like unspecialized stem cells, the aggressive melanoma cell gained enhanced abilities to migrate, invade and metastasize while virtually undetected by the immune system.

Now, in the American Association of Anatomists’ plenary lecture and symposium, at Experimental Biology 2007 in Washington, DC, Dr. Hendrix describes new research that used an innovative experimental approach to provide unique insights into how scientists can change human metastatic melanoma cells back to normal-like skin cells - by exposing the tumor cells to the embryonic microenvironment of human embryonic stem cells, the zebra fish and the chick embryo.

Dr. Hendrix’s plenary lecture on April 29 is a highlight of the scientific program of the American Association of Anatomists. Her presentation is titled "the convergence of embryonic and cancer signaling pathways: role in tumor cell plasticity." Plasticity refers to the ability of the tumor cell, like the embryonic cell, to express or change into multiple, different types of cells.

First, a quick primer on the shared characteristics of aggressive tumor cells and embryonic stem cells: Embryonic stem cells are pluripotent, meaning they are able to differentiate into any of the more than 200 cell types in the adult body. Which type of cell they become depends on the signals they receive from their microenvironment. Similarly, during cancer progression, malignant cells receive and release signals from their own microenvironment, cues that promote tumor growth and metastasis.

In order to better understand what signals the melanoma cells are sending and receiving, Dr. Hendrix and her colleagues used the microenvironment of the zebrafish to study whether the tumor cells could communicate with the zebrafish stem cells and affect their early development. The zebrafish is a widely-used organism for genetic and developmental studies because of its prolific reproduction, rapid development, and transparent embryo that develops outside the body (making it especially easy to simply watch development), and the fact it develops organs and tissues comparable to those in humans, such as heart, kidney, pancreas, bones and cartilage.)

Using the zebrafish model, and the extraordinary technologic advances made in microscopy and molecular biology in recent years, the team was able to show that the aggressive melanoma cells secrete Nodal, a critical component underling the two-way communication between tumor cells and the embryonic microenvironment. Nodal is an embryonic factor (also called a morphogen) responsible for maintaining the pluripotency of human embryonic stem cells: their ability to develop or "morph" into one of a variety of body cells. When aggressive melanoma and other tumor cells (recent findings also report Nodal expression in breast cancer and testicular cancer) regain the ability to express a potent embryonic morphogen like Nodal, the presence of the Nodal and the signals it sends and receives appear to play a key role in tumor cell plasticity and progression.

Most noteworthy, Dr. Hendrix’s team’s also has shown that inhibition of Nodal signaling leads to a reduction in melanoma cell invasiveness and ability to create new tumors. In fact, with inhibition of Nodal, the metastatic melanoma cells are reverted to a more benign skin cell without the ability to form tumors.

Findings from the zebrafish study were further confirmed in the human embryonic stem cell model and the chick embryo model - where inhibiting Nodal signaling led to the reversal of the melanoma cells to a more normal cell type.

This is a promising area of research, says Dr. Hendrix. The discovery of a new signalizing pathway in melanoma and other tumor cell types and the ability to inhibit Nodal and thus reverse the melanoma cell back toward a normal skin cell provide a previously unknown target for regulating tumor progression and metastasis.

Dr. Hendrix’s distinguished lecture is part of a session titled the cell microenvironment in development and cancer.

Source: Northwestern University

Explore further: AML study reports high response rates with combination targeted therapy

Related Stories

AML study reports high response rates with combination targeted therapy

December 11, 2017
Initial findings from a multi-national open-label phase Ib study of inhibitory drug therapy for relapsed or refractory acute myeloid leukemia (AML) have demonstrated a complete response in up to 50 percent patients say researchers ...

Genes associated with progression of melanoma identified

December 7, 2017
When researchers at the University of São Paulo (USP) in Brazil treated human melanoma cell lines with a synthetic compound similar to curcumin, one of the pigments that give turmeric (Curcuma longa) its orange color, they ...

Novel compound restores immune response in patients with melanoma

December 8, 2017
A novel compound may restore immune response in patients with melanoma, according to a study presented at the ESMO Immuno Oncology Congress 2017.

New dissertation on the treatment of malignant melanoma

December 6, 2017
Malignant melanoma is one of the most common causes of cancer deaths among young adults. Although treatment for melanoma has improved in recent years, most patients do not benefit from the treatment, which also often causes ...

Role of melanoma-promoting protein revealed

December 6, 2017
In a new study, Yale researchers describe the role of a protein that promotes growth of melanoma, the deadliest form of skin cancer.

Combination strategy could hold promise for ovarian cancer

December 5, 2017
Johns Hopkins Kimmel Cancer Center researchers demonstrated that mice with ovarian cancer that received drugs to reactivate dormant genes along with other drugs that activate the immune system had a greater reduction of tumor ...

Recommended for you

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

Liquid biopsy results differed substantially between two providers

December 14, 2017
Two Johns Hopkins prostate cancer researchers found significant disparities when they submitted identical patient samples to two different commercial liquid biopsy providers. Liquid biopsy is a new and noninvasive alternative ...

Testing the accuracy of FDA-approved and lab-developed cancer genetics tests

December 14, 2017
Cancer molecular testing can drive clinical decision making and help a clinician determine if a patient is a good candidate for a targeted therapeutic drug. Clinical tests for common cancer causing-mutations in the genes ...

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

Newest data links inflammation to chemo-brain

December 14, 2017
Inflammation in the blood plays a key role in "chemo-brain," according to a published pilot study that provides evidence for what scientists have long believed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.