Reversing cancer cells to normal cells

April 29, 2007

A Northwestern University scientist describes new research that used an innovative experimental approach to provide unique insights into how scientists can change human metastatic melanoma cells back to normal-like skin cells -- by exposing the tumor cells to the embryonic microenvironment of human embryonic stem cells, the zebra fish and the chick embryo.

In earlier work, Northwestern University scientist Mary J.C. Hendrix and colleagues discovered that aggressive melanoma cells (but not normal skin cells nor less aggressive melanoma cells) contain specific proteins similar to those found in embryonic stem cells. This groundbreaking work led to the first molecular classification of malignant melanoma and may help to explain how, by becoming more like unspecialized stem cells, the aggressive melanoma cell gained enhanced abilities to migrate, invade and metastasize while virtually undetected by the immune system.

Now, in the American Association of Anatomists’ plenary lecture and symposium, at Experimental Biology 2007 in Washington, DC, Dr. Hendrix describes new research that used an innovative experimental approach to provide unique insights into how scientists can change human metastatic melanoma cells back to normal-like skin cells - by exposing the tumor cells to the embryonic microenvironment of human embryonic stem cells, the zebra fish and the chick embryo.

Dr. Hendrix’s plenary lecture on April 29 is a highlight of the scientific program of the American Association of Anatomists. Her presentation is titled "the convergence of embryonic and cancer signaling pathways: role in tumor cell plasticity." Plasticity refers to the ability of the tumor cell, like the embryonic cell, to express or change into multiple, different types of cells.

First, a quick primer on the shared characteristics of aggressive tumor cells and embryonic stem cells: Embryonic stem cells are pluripotent, meaning they are able to differentiate into any of the more than 200 cell types in the adult body. Which type of cell they become depends on the signals they receive from their microenvironment. Similarly, during cancer progression, malignant cells receive and release signals from their own microenvironment, cues that promote tumor growth and metastasis.

In order to better understand what signals the melanoma cells are sending and receiving, Dr. Hendrix and her colleagues used the microenvironment of the zebrafish to study whether the tumor cells could communicate with the zebrafish stem cells and affect their early development. The zebrafish is a widely-used organism for genetic and developmental studies because of its prolific reproduction, rapid development, and transparent embryo that develops outside the body (making it especially easy to simply watch development), and the fact it develops organs and tissues comparable to those in humans, such as heart, kidney, pancreas, bones and cartilage.)

Using the zebrafish model, and the extraordinary technologic advances made in microscopy and molecular biology in recent years, the team was able to show that the aggressive melanoma cells secrete Nodal, a critical component underling the two-way communication between tumor cells and the embryonic microenvironment. Nodal is an embryonic factor (also called a morphogen) responsible for maintaining the pluripotency of human embryonic stem cells: their ability to develop or "morph" into one of a variety of body cells. When aggressive melanoma and other tumor cells (recent findings also report Nodal expression in breast cancer and testicular cancer) regain the ability to express a potent embryonic morphogen like Nodal, the presence of the Nodal and the signals it sends and receives appear to play a key role in tumor cell plasticity and progression.

Most noteworthy, Dr. Hendrix’s team’s also has shown that inhibition of Nodal signaling leads to a reduction in melanoma cell invasiveness and ability to create new tumors. In fact, with inhibition of Nodal, the metastatic melanoma cells are reverted to a more benign skin cell without the ability to form tumors.

Findings from the zebrafish study were further confirmed in the human embryonic stem cell model and the chick embryo model - where inhibiting Nodal signaling led to the reversal of the melanoma cells to a more normal cell type.

This is a promising area of research, says Dr. Hendrix. The discovery of a new signalizing pathway in melanoma and other tumor cell types and the ability to inhibit Nodal and thus reverse the melanoma cell back toward a normal skin cell provide a previously unknown target for regulating tumor progression and metastasis.

Dr. Hendrix’s distinguished lecture is part of a session titled the cell microenvironment in development and cancer.

Source: Northwestern University

Explore further: Researchers identify new way to unmask melanoma cells to the immune system

Related Stories

Researchers identify new way to unmask melanoma cells to the immune system

January 16, 2018
system, which enables these deadly skin cancers to grow and spread.

Presurgical targeted therapy delays relapse of high-risk stage 3 melanoma

January 17, 2018
A pair of targeted therapies given before and after surgery for melanoma produced at least a six-fold increase in time to progression compared to standard-of-care surgery for patients with stage 3 disease, researchers at ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

Who might benefit from immunotherapy? New study suggests possible marker

January 16, 2018
While immunotherapy has made a big impact on cancer treatment, the fact remains that only about a quarter of patients respond to these treatments.

Smart insulin patch may aid future therapies

January 18, 2018
A smart insulin patch, once translated for humans, could eliminate the need for constant blood testing and help diabetics maintain a more consistent level of blood glucose.

Scientists identify potential target genes to halt progression of thyroid cancer

January 19, 2018
Thyroid cancer is a disease with good cure rates in most cases. In 5 percent of patients, however, the tumor becomes refractory to the available therapies and may spread all over the body, causing death.

Recommended for you

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.

Workouts may boost life span after breast cancer

January 22, 2018
(HealthDay)—Longer survival after breast cancer may be as simple as staying fit, new research shows.

Cancer patients who tell their life story find more peace, less depression

January 22, 2018
Fifteen years ago, University of Wisconsin–Madison researcher Meg Wise began interviewing cancer patients nearing the end of life about how they were living with their diagnosis. She was surprised to find that many asked ...

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.