The brain can rapidly reorganise to recover from damage

May 4, 2007
The brain can rapidly reorganise to recover from damage
The brain reorganises itself after parts of it become damaged. Credit: iStockphoto

The brain can transfer specific functions to new areas when part of it is damaged, according to Oxford research.

The findings, published in Neuron, are relevant to understanding processes of recovery after stroke.

When brain damage occurs in stroke patients, activity in undamaged parts of the brain often increases. This is particularly prominent in patients with poor recovery.

However, it was not clear whether this was a cause of slow recovery, with activity in the brain becoming chaotic, or part of an adaptive process that helps recovery – the brain trying hard to transfer function over to the healthy hemisphere.

To find out, Dr Jacinta O’Shea and colleagues in the Department of Experimental Psychology and the Centre for Functional MRI of the Brain simulated brain damage in healthy volunteers by using transcranial magnetic stimulation (TMS), temporarily disrupting normal activity in the premotor cortex (a part of the brain that enables people to select which movement to make).

Participants were then asked to perform a task whose success depended on normal levels of activity in the premotor cortex: they had to make one of two finger movements depending on which of several shapes was presented on a computer screen.

As would be expected, after the simulated brain damage participants were initially slower at selecting the correct response. However, after four minutes, performance was back to normal. ‘This suggested to us that the brain might have reorganised itself to compensate for the interference’, says Dr O’Shea.

By imaging participants’ brains, the researchers confirmed that during recovered performance there was increased activity in undisrupted parts of the brain. As final confirmation, they tried disrupting one of the newly active brain areas – and, as predicted, performance on the task was once again impaired. The function of the ‘damaged’ brain area had been moved to the ‘healthy’ half of the brain.

The transfer was specific to the function of the premotor cortex, and it happened only when it was needed for the job,’ said Dr O’Shea. ‘The speed of the reorganisation was also impressive: the brain temporarily reconfigured itself in a matter of minutes.

‘Our findings show just how flexible the brain is.’

Source: University of Oxford

Explore further: Neuroscience research provides evidence the brain is strobing, not constant

Related Stories

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Breakthrough research suggests potential treatment for autism, intellectual disability

November 13, 2017
A breakthrough in finding the mechanism and a possible therapeutic fix for autism and intellectual disability has been made by a University of Nebraska Medical Center researcher and his team at the Munroe-Meyer Institute ...

Studying sleep's profound and extensive effects on brain function

November 12, 2017
Although the general benefits of a good night's sleep are well established, one-third of American adults do not get a sufficient amount of sleep. Recent research sheds new light on the extensive effects of sleep on the brain, ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Potential new autism drug shows promise in mice

November 14, 2017
Scientists have performed a successful test of a possible new drug in a mouse model of an autism disorder. The candidate drug, called NitroSynapsin, largely corrected electrical, behavioral and brain abnormalities in the ...

Q&A: Lifelong strategies for preventing dementia

November 17, 2017
Dear Mayo Clinic: Do puzzles and other activities or apps that claim to lower one's risk of developing dementia actually work? Are there other things people can do to decrease the risk?

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.