Mice and men make livers differently

May 21, 2007
Mice and men make livers differently
An MIT research team studying gene regulation in mouse and human liver cells has found that master regulatory proteins function differently in the two. From left, post-doc Robin Dowell, Professor Ernest Fraenkel, graduate student Kenzie MacIsaac and research technician William Gordon discuss their research. Photo / Donna Coveney

Scientists often study mice as a model for human biology and disease, because their basic biological processes are assumed to be essentially the same as those of humans.

But now, a team of MIT researchers has uncovered a surprising difference. In a study of gene regulation in mouse and human liver cells, they found that master regulatory proteins function in very different ways in mice and humans.

"Evolution has discovered several different ways to make a liver from the same building blocks," said Ernest Fraenkel, MIT assistant professor of biological engineering and leader of the research team. "Comparing these different ways of regulating genes may unlock some of nature's most closely guarded secrets."

The work, which will be published in the May 21 online edition of Nature Genetics, could help identify patterns in the extremely complicated control mechanisms involved in gene expression.

"You can think of it as two different dialects of the same language. By exploring the human and mouse versions, we hope to find an underlying grammar," said Fraenkel.

Every cell in the human (or mouse) body has the same collection of genes, but the genome of each cell is carefully regulated so that only certain genes are expressed. Regulatory proteins known as transcription factors control this expression by binding to specific locations within the genome and turning nearby genes on or off.

The researchers and their colleagues had previously worked out many aspects of gene regulation in the human liver, which is one reason the researchers chose to study the liver. In the current study they compared 4,000 human genes with nearly identical counterparts, known as homologous genes, from mouse liver cells.

Given the similarity between the two species' DNA sequences, the researchers expected that transcription factors would bind to the same sites in most pairs of homologous genes. To their surprise, they found that most of the binding sites--between 41 percent and 89 percent, depending on the transcription factor--were in different locations in humans and mice.

"The number of genes with the identical regulation in both species was very, very small," Fraenkel said.

Before they began, the researchers expected to see some differences in gene regulation between mice and humans, because the human liver has evolved to process cooked food, said Fraenkel. However, the magnitude of change was much higher than they anticipated.

Fraenkel speculated that the changes accumulated without having much of an effect on gene expression. Unless the location of binding sites affects gene expression, it is not under any natural selection pressure.

All of that meaningless variation makes it harder to identify the small number of genes where binding site migrations do have an evolutionary impact, because they are being drowned out by all the insignificant changes, Fraenkel said. In future studies, the research team plans to investigate why some genes' binding sites are conserved over time while others shift.

"We want to understand what's special about those genes," Fraenkel said.
Fraenkel said the results should provide guidance for researchers who study mice to better understand human biology. "To get the most out of mice for biomedical research we need to fully map out the regulation in both organisms," he said.

Lead authors on the paper are Duncan Odom, a former postdoctoral associate at the Whitehead Institute for Biomedical Research now at Cancer Research UK, and Robin Dowell, a postdoctoral fellow in MIT's Computer Science and Artificial Intelligence Laboratory.

Other authors are Elizabeth Jacobsen and Caitlin Conboy, technical assistants at the Whitehead Institute; William Gordon, a technical assistant in the Department of Biological Engineering; Timothy Danford, Kenzie MacIsaac and Alexander Rolfe, graduate students in electrical engineering and computer science; and David Gifford, professor of electrical engineering and computer science.

Source: MIT

Explore further: Blood vessel 'master gene' discovery could lead to treatments for liver disease

Related Stories

Blood vessel 'master gene' discovery could lead to treatments for liver disease

October 16, 2017
Scientists have identified a key gene in blood vessels which could provide a new way to assess and potentially treat liver disease.

Genes critical for hearing identified

October 12, 2017
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes. The newly discovered genes will provide insights into the causes of hearing loss in humans, say scientists ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

Cause of cancer form in the liver identified

October 12, 2017
In a new study, researchers from the University of Copenhagen have identified the two genes whose mutation cause a serious cancer form found in the liver. The result sets concrete goals for future treatment of the otherwise ...

Genetic advance for male birth control

October 10, 2017
When it comes to birth control, many males turn to two options: condoms or vasectomies. While the two choices are effective, both methods merely focus on blocking the transportation of sperm.

Stress has dramatically different effects on male and female mouse brains

October 10, 2017
"Remarkable" is not a word you encounter very often in the scientific literature, where the unadorned description of experiments and their outcomes is the rule. But the adjective makes a bold appearance in a new report from ...

Recommended for you

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

Large variety of microbial communities found to live along female reproductive tract

October 18, 2017
(Medical Xpress)—A large team of researchers from China (and one each from Norway and Denmark) has found that the female reproductive tract is host to a far richer microbial community than has been thought. In their paper ...

Study of what makes cells resistant to radiation could improve cancer treatments

October 18, 2017
A Johns Hopkins University biologist is part of a research team that has demonstrated a way to size up a cell's resistance to radiation, a step that could eventually help improve cancer treatments.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.