Students invent protective pouch to enhance cell therapy

May 7, 2007
Students invent protective pouch to enhance cell therapy
The outer stent is made of stainless steel. The inner one, made of nitinol, is covered by a band of nylon mesh. The cell therapy "pouch" is created in the gap between the two stents. Credit: Will Kirk/JHU

Johns Hopkins undergraduates have invented a device to improve cell therapy for diabetes patients by anchoring transplanted insulin-producing cells inside a major blood vessel.

A team of five seniors and two freshmen, working with Johns Hopkins doctors and engineers, devised a protective "pouch" that should fit inside the portal vein, which feeds into the liver. This pouch would keep microcapsules of therapeutic cells in one place, allowing them to thrive and send out needed insulin. The inventors say the same approach could be used in cell therapy for other ailments, including liver disease.

"I think it's a brilliant idea," said one of the project's sponsors, Jeff W. M. Bulte, director of the Cellular Imaging Section in the Johns Hopkins Institute for Cell Engineering.

The pouch is formed by sandwiching a porous band of nylon mesh between two concentric metal stents, similar to the ones used to keep clogged blood vessels open. Once the stents are in place, microcapsules filled with helpful cells are injected into the gap between the stents, where they become trapped within the nylon mesh. Blood flowing through the vessel should nourish the encapsulated cells and circulate the proteins, such as insulin, produced by these cells.

The project is important because it could lead to better results from cellular therapy, in which live cells are injected to repair or replace damaged or depleted tissue. "It’s a device," Bulte said, "that allows the microcapsules to be removed and reinserted if additional therapy is needed – a ‘yearly refill,’ for example – and the students have provided an ideal environment in which the encapsulated cells can thrive."

Along with other undergraduate projects, this prototype was unveiled May 2 at the university’s Biomedical Engineering Design Day showcase. The Johns Hopkins Technology Transfer staff has applied for a provisional patent. Animal testing is expected to begin this summer. If it is successful, human trials would follow.

"It’s very impressive," said Aravind Arepally, an interventional radiologist who served as the project’s other sponsor. "We’re basically creating a small bio-reactor inside the vein to produce insulin and other proteins that the body needs. The students have built a housing in which the bio-reactor can operate. I’m pretty optimistic that it will work in living subjects."

The leader of the student design team, Tom Link, said he selected this project because it has the potential to benefit many people. "It could provide an important new way to treat diabetes and fulminant liver failure," said Link, 22, of Holbrook, N.Y. "I know about the health problems associated with diabetes because my grandmother has it, and she has to give herself several shots a day. If it works, this cell therapy could eliminate the need for that."

Progress in cell therapy has been slow for several reasons. First, the injected cells are often attacked by a patient’s immune system. Also, the injected cells cannot survive long without plentiful oxygen and nutrients, which are not available throughout the body. Finally, once they are inside the patient, the injected cells need to settle in a place where they can provide effective treatment without interfering with healthy body functions.

Arepally and Bulte have overcome some of these hurdles by working with semi-permeable alginate microcapsules – tiny spheres that surround the injected cells and protect them from the body’s immune system. At the same time, the spheres allow beneficial proteins to flow out and oxygen and glucose to flow freely in. Arepally and Bulte, both faculty members in the Russell H. Morgan Department of Radiology and Radiological Science of the Johns Hopkins School of Medicine, also have developed ways, covered by a pending patent, to track the microcapsules with various imaging technologies.

They and researchers elsewhere have struggled, however, to keep these encapsulated cells alive within the body, mainly because the cells often situate themselves where they do not have access to a plentiful blood supply. To address this challenge, the radiologists last year asked undergraduates in the university’s BME Design Team course to devise a way to keep the microcapsules in one place where their cells could thrive and deliver effective therapy.

During the past school year, the engineering students researched the topic, tested biomaterials and constructed the prototype, designed to fit inside the portal vein. This large blood vessel, about the diameter of an index finger, carries blood from the digestive system into the liver.

The pouch components are made to be compressed and inserted with catheters that a physician can snake into the abdomen through the femoral vein in the leg. Using real-time imaging technology, an interventional radiologist can view and guide the minimally invasive procedure as it takes place. First, the doctor would insert the stainless steel outer stent, which would push out harmlessly on the elastic interior of the vein. Next, the doctor would insert the inner stent, surrounded by the porous nylon mesh. The inner stent is made of nitinol, a metal that snaps back into its original shape after being compressed for insertion. The inner stent matches the interior diameter of the vein. When all of the pieces are inserted, the nylon mesh is held snugly against the inner stent. A gap forms between the mesh and the outer stent, allowing blood to pass through.

At this point, the physician would use another catheter to inject the encapsulated cells between the stents, where the mesh would hold them in place. The tiny openings in the mesh, each about 250 microns in diameter, would allow blood to pass through to nourish the cells and disperse helpful proteins. But the openings are too small to allow the microcapsules to escape.

In lab tests using latex tubing to represent a vein, the students used ultrasound imaging to confirm that fluid can flow smoothly through the mesh and can spread the microcapsules throughout pouch. They also demonstrated that the device causes no pressure drop in the model blood vessels and that the microcapsules can easily be injected and withdrawn.

Link said he and his team members appreciated the chance to solve a real-world engineering challenge while drawing on the expertise of prominent researchers such as Arepally and Bulte. "I don’t think I could have found an opportunity like this anywhere else," he said. "That’s one of the major strengths of Johns Hopkins." Link plans to continue working on the project in the university’s biomedical engineering master’s degree program.

Source: Johns Hopkins University

Explore further: Scientists develop patch which could improve healing and reduce scarring

Related Stories

Scientists develop patch which could improve healing and reduce scarring

September 25, 2017
Scientists from Nanyang Technological University, Singapore (NTU Singapore) have developed a new gel patch prototype that could speed up the healing of a skin wound while minimising the formation of scars. The team unveiled ...

Insulin microcapsule may replace needle jab

April 28, 2016
West Australian diabetics who need to inject insulin to maintain their lifestyle may soon be free of the regular needle jab—and the constant annoying questions that go with it.

'Sugar-coated' microcapsule eliminates toxic punch of experimental anti-cancer drug

December 17, 2014
Johns Hopkins researchers have developed a sugar-based molecular microcapsule that eliminates the toxicity of an anticancer agent developed a decade ago at Johns Hopkins, called 3-bromopyruvate, or 3BrPA, in studies of mice ...

New approach could kill tumor cells in the brain more effectively and avoid side effects

October 28, 2014
Every year, about 100,000 Americans are diagnosed with brain tumors that have spread from elsewhere in the body. These tumors, known as metastases, are usually treated with surgery followed by chemotherapy, but the cancer ...

Battery, heal thyself: Inventing self-repairing batteries

January 11, 2012
(PhysOrg.com) -- Imagine dropping your phone on the hard concrete sidewalk—but when you pick it up, you find its battery has already healed itself.

Researchers investigating the many ways we get by with a little help from trillions of our bacterial friends

September 20, 2013
Everyone's got a personal collection of microbiota. You could think of yours as your unique internal pet—at up to 3 percent of your body mass, it's as hefty as a teacup Yorkie or a large guinea pig—requiring care and ...

Recommended for you

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

Team eradicates hepatitis C in 10 patients following lifesaving transplants from infected donors

April 30, 2017
Ten patients at Penn Medicine have been cured of the Hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease. The findings point to new strategies for increasing ...

'bench to bedside to bench': Scientists call for closer basic-clinical collaborations

March 24, 2017
In the era of genome sequencing, it's time to update the old "bench-to-bedside" shorthand for how basic research discoveries inform clinical practice, researchers from The Jackson Laboratory (JAX), National Human Genome Research ...

The ethics of tracking athletes' biometric data

January 18, 2017
(Medical Xpress)—Whether it is a FitBit or a heart rate monitor, biometric technologies have become household devices. Professional sports leagues use some of the most technologically advanced biodata tracking systems to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.