'Cars' imaging reveals clues to myelin damage

June 27, 2007

Researchers have discovered that calcium ions could play a crucial role in multiple sclerosis by activating enzymes that degrade the fatty sheath that insulates nerve fibers.

Learning exactly how the myelin sheath is degraded might enable scientists to determine how to halt disease progress and reverse damage by growing new myelin, said Ji-Xin Cheng, an assistant professor in Purdue University's Weldon School of Biomedical Engineering and Department of Chemistry.

"Although multiple sclerosis has been studied for many years, nobody knows exactly how the disease initially begins," he said. "The pathway is not clear."

Purdue researchers used an imaging technique called coherent anti-Stokes Raman scattering, or CARS, to study how the myelin sheath is degraded by a molecule called lysophosphatidylcholine, known as LPC. The LPC does not cause multiple sclerosis, but it is used extensively in laboratory research to study the deterioration of myelin, which insulates nerve fibers and enables them to properly conduct impulses in the spinal cord, brain and peripheral nervous system throughout the body.

The findings suggest that LPC causes sheath degradation by allowing an influx of calcium ions into the myelin. The increased concentration of calcium ions then activates two enzymes - calpain and cytosolic phospholipase A2 - which break down proteins and molecules in the myelin called lipids.

"It is possible that the same pathway causes myelin degradation in people suffering from multiple sclerosis and spinal cord injuries," Cheng said.

The research demonstrates that CARS microscopy is a valuable research tool and could become a future clinical method to diagnose multiple sclerosis and detect damage to the spinal cord from accident trauma, which also causes the myelin to degrade, he said.

Research findings are detailed in a paper appearing online this month in the Journal of Neuroscience Research. The paper was authored by biomedical engineering doctoral student Yan Fu and postdoctoral research associate Haifeng Wang; Terry B. Huff, a graduate teaching assistant in the Department of Chemistry; Riyi Shi, an associate professor of basic medical sciences in Purdue's School of Veterinary Medicine and an associate professor of biomedical engineering; and Cheng.

"The findings of this study will help us to identify key steps in the progression of the demyelination, which is a hallmark of multiple sclerosis," said Shi, a researcher at Purdue's Institute for Applied Neurology and Center for Paralysis Research. "This information will also facilitate the design of pharmaceutical interventions that slow down or even reverse the development of the debilitating disease."

The researchers used CARS to study and take images of healthy and diseased myelin. The researchers showed that an enzyme called cytosolic phospholipase A2 contributes to myelin degradation by snipping off one of the two tails that make up lipid molecules contained in the myelin. Cutting off one of the tails turns the lipid molecules into LPC, amplifying the effect and further degrading the myelin.

The research was carried out in spinal cord tissues extracted from animals and in the sciatic nerves of living mice.

Findings were confirmed by comparing CARS results with electron microscope images and measurements of electrical impulses in spinal cord tissue that distinguish between normal and diseased myelin.

CARS imaging takes advantage of the fact that molecules vibrate at specific frequencies. In a CARS microscope, two laser beams are overlapped to produce a single beam having a new frequency representing the difference between the original two beams. This new frequency then drives specific molecules to vibrate together "in phase," amplifying the signals from those molecules.

Source: Purdue University

Explore further: An innovative PET tracer can measure damage from multiple sclerosis in mouse models

Related Stories

An innovative PET tracer can measure damage from multiple sclerosis in mouse models

January 12, 2018
The loss or damage of myelin, a cellular sheath that surrounds and insulates nerves, is the hallmark of the immune-mediated neurological disorder multiple sclerosis (MS). When segments of this protective membrane are damaged, ...

Researchers report novel complementary effects of estrogen treatment in multiple sclerosis

December 28, 2017
A study by UCLA researchers reveals the cellular basis for how the hormone estrogen protects against damage to the central nervous system in people with multiple sclerosis (MS). The researchers found that estrogen treatment ...

Multiple sclerosis—cholesterol crystals prevent regeneration in central nervous system

January 5, 2018
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, in which the body's own immune cells attack the fatty, insulating myelin sheath surrounding nerve fibers. The regeneration of intact ...

Researchers find potential path to repair multiple sclerosis-damaged nerves

December 26, 2017
Gene expression in specific cells and in specific regions can provide a more precise, neuroprotective approach than traditional treatments for neurological diseases. For multiple sclerosis, specifically, increasing cholesterol ...

Antidepressant may help combat the course of multiple sclerosis

December 20, 2017
The antidepressant clomipramine may also alleviate symptoms of multiple sclerosis (MS), specifically in its progressive form, i.e. when it occurs without relapses or remissions. As yet, drugs for this type of MS have been ...

A little myelin goes a long way to restore nervous system function

October 24, 2017
In the central nervous system of humans and all other mammals, a vital insulating sheath composed of lipids and proteins around nerve fibers helps speed the electrical signals or nerve impulses that direct our bodies to walk, ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.