'Lucky 13' as new gene discovery offers further hope for childhood blindness

June 11, 2007

An international research team has discovered a gene that, when mutated, causes one of the most common forms of inherited blindness in babies. Scientists at the University of Leeds, working in collaboration with experts from other centres around the world, identified the gene, which is essential to photoreceptors in the eye, the cells that "see" light.

The finding, the thirteenth gene to be linked to Leber’s congenital amaurosis (LCA), comes at a time of hope for the people born with the disorder. Scientists at Moorfields Eye Hospital, London, recently announced the start of clinical trials for a gene therapy involving injecting genes into the eye of patients with LCA to restore their sight. The finding of the new LCA gene, based on work funded by the Wellcome Trust and local charity Yorkshire Eye Research, appears in this month's edition of the journal Nature Genetics.

The newly-discovered gene, LCA5, is involved in the production of lebercilin, an essential component of photoreceptors in the retina. Lebercilin is found in other tissues as part of the cilia, finger-like projections from the surface of cells capable of moving molecules around. However, mutations in the LCA5 gene only appear to cause defects in the retina.

"We already know of a dozen genes which, when mutated, cause LCA," says Professor Chris Inglehearn from the Leeds Institute of Molecular Medicine at St James's Hospital, Leeds. "This new gene is the thirteenth and adds a substantial new piece to a growing body of evidence that defects of the cilia are a major cause of inherited blindness. In that sense, we can consider this a 'lucky thirteenth' as we are building a much clearer picture of what causes the disorder."

Professor Inglehearn believes that lebercilin may be involved in moving proteins from the inner to outer segments of photoreceptors in the retina. Protein transport is essential within retinal photoreceptor cells as they are long, thin cells with a highly evolved structure on one end (the outer segment) which detects light and sends signals to the brain, a function requiring a large amount of energy.

"LCA is usually a disease where protein function has been lost completely, but carriers of just one copy of the mutation, who will almost certainly have reduced protein levels, nevertheless function perfectly normally," explains Professor Inglehearn. "This being the case, restoration of even a tenth of the missing protein may be enough to restore vision. So our findings, together with the recently announced clinical trials, hold great promise."

Mutations in LCA5 are relatively rare. As it is a recessive gene, a child would need to be carrying two copies of the gene to develop LCA, one from each parent. However, the disorder is more common within populations where marriage to first or second cousins is common, such as the Pakistani community.

"If a parent is found to carry a mutation in the LCA5 gene, the risk of blindness in their children and grandchildren is still virtually zero as long as the other parent does not carry it," says Professor Inglehearn. "The odds of two parents both carrying the same or different mutations in the LCA5 gene is very low, but this increases where the parents are related."

Professor Inglehearn hopes that the findings will be useful to inform and counsel the families most at risk, particularly within the Pakistani communities both in the UK and Northern Pakistan.

The findings have been welcomed by Bruce Noble from Yorkshire Eye Research, which part-funded the research.

"Obviously we have to be careful how we interpret these results, as finding the genes doesn't automatically lead to a cure," says Mr Noble. "Nevertheless, this new result tells us something very important about what the eye is doing normally and about a new and common way in which it can go wrong. Given some exciting recent developments on testing possible cures for inherited blindness, its becoming very important for everybody to know exactly which mutation they've got, because the treatments being tested are specific for different kinds of retinal degeneration. All in all its an exciting time for eye research and a very promising one for people with these conditions. This new result is another important step in the right direction and Yorkshire Eye Research is very proud to have supported it."

The research was also welcomed by Professor John Marshall, Chairman of the Medical Advisory Board at the British Retinitis Pigmentosa Society.

"This dramatic discovery provides further information enabling us to combat blindness within the Retinitis Pigmentosa group," says Professor Marshall. "The more genes we discover the better we are placed to treat the diseases by methods such as that recently announced at Moorfields Eye Hospital – also supported by the BRPS."

Source: Wellcome Trust

Explore further: Study advances gene therapy for glaucoma

Related Stories

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

Hereditary facial features could be strongly influenced by a single gene variant, a new study finds

January 9, 2018
Do you have your grandmother's eyes? Or your father's nose? A new study by the Universities of Oxford and Surrey has uncovered variations in singular genes that have a large impact on human facial features, paving the way ...

Improving autism interventions

January 4, 2018
"We have a huge need for efficient, reliable and objective autism-screening tools. Currently, there's nothing that could easily and dependably be administered to every single child."

A cluster of mutations in neurofibromatosis is important risk factor for severe symptoms

December 28, 2017
Research led by Ludwine Messiaen, Ph.D., professor of genetics at the University of Alabama at Birmingham, shows that missense mutations in a cluster of just five codons in the NF1 gene are an important risk factor for severe ...

Diabetic blindness caused and reversed "trapped" immune cells in rodent retinas

January 3, 2018
Johns Hopkins researchers have discovered a cell signaling pathway in mice that triggers vision loss in patients with diabetic retinopathy and retinal vein occlusion – diseases characterized by the closure of blood vessels ...

Link between NYC cancer cluster and Chernobyl disaster

January 12, 2018
A new study led by a University at Albany professor has found a potential link between a cluster of cancer diagnoses in New York City and the 1986 Chernobyl Nuclear Disaster.

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.