Neuronal activity gives clues to working memory

June 7, 2007

A newly discovered interplay of cells in one of the brain's memory centers sheds light on how you recall your grocery list, where you laid your keys, and a host of important but fleeting daily tasks.

Scientists at Weill Cornell Medical College say their experiments with common goldfish are uncovering the secrets of a form of short-term recall known as "working memory."

"We've now identified a mechanism that can organize the activity of groups of cells involved in this important form of recall," says lead researcher Dr. Emre Aksay, assistant professor of computational neuroscience in the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine at Weill Cornell Medical College in New York City.

"Furthermore, because deficits in working memory are often a precursor of schizophrenia, drugs that target this mechanism might someday help fight that debilitating disease," he says.

The findings have been published in Nature Neuroscience.

Humans rely on their working memory every day to keep track of faces and names, tasks at school or in the workplace, and other important bits of information. "This process is distinct, neurologically speaking, from the storage and retrieval of longer-term memories," explains Dr. Aksay, who is also assistant professor of physiology and biophysics at Weill Cornell.

Experts in labs around the world have developed theories as to how this process works. "Its basis lies in the ability of specific neurons to maintain a level of activity in the absence of input -- a persistent firing rate -- that's finely coordinated across related groups of cells," Dr. Aksay says.

But how do these brain cells communicate which each other to coordinate this activity"

To find out, Dr. Aksay, along with colleagues Dr. David Tank of Princeton University, and Dr. Mark Goldman of Wellesley College, turned to the common goldfish.

"It's really quite difficult to test the function of individual brain cells in primates and higher animals during behavior, but the goldfish's memory centers are much more accessible to research," Dr. Aksay explains. "We looked specifically at the fishes' oculomotor system -- the neural circuitry that directs the fish to shift its eyes left or right based on stimuli in the local environment." Because stimuli can be ever-changing and fleeting, the fish relies on its short-term memory to help guide these eye movements.

Two groups of cells are involved in this oculomotor memory, one in each half of the brain. Each group contains two types of neurons -- inhibitory cells and excitatory cells, and it is the inhibitory neurons that allow the two groups to interact. "In our experiments, we used pharmacologic means to interrupt either excitatory or inhibitory pathways, and then we watched what happened to persistent firing," Dr. Aksay says.

When the excitatory pathways were dampened, the persistence was impaired -- suggesting that excitation is essential to the sustained firing that working memory requires.

"The real surprise came when we turned off many of the inhibitory pathways," Dr. Aksay says. In that case, persistent firing remained, but was often present at inappropriate times.

"It appears that the inhibitory cells are not key or even required to generate persistent firing," the researcher says. "Instead, they send a message from one group to the other that helps coordinate two sides: the role of inhibition in this system is to make sure that only one group is generating persistent activity at a given time. In this way, the goldfish doesn't get a mixed signal telling it to move its eyes in both directions at once."

This new finding has big implications for our understanding of the neural processes underlying working memory and the instantaneous decision-making that goes on based on that knowledge.

It might also have broader applications for psychiatric illness, Dr. Aksay notes.

"Many schizophrenic individuals, for example, show severe deficits in working memory, and children with working memory problems are at heightened risk of developing schizophrenia as adults," he says. Dysfunction in key inhibitory pathways that link brain cells has long been associated with these problems.

"These findings suggest that it is necessary to address not only deficits in excitatory pathways that lead to a lack of persistent firing but also dysfunction in inhibitory pathways that lead to a lack of coordination among groups of cells," Dr. Aksay explains. "This strategy could provide improved treatment options for people with schizophrenia."


Source: New York- Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College

Related Stories

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.