Substance in tree bark could lead to new lung-cancer treatment

June 26, 2007

Researchers at UT Southwestern Medical Center have determined how a substance derived from the bark of the South American lapacho tree kills certain kinds of cancer cells, findings that also suggest a novel treatment for the most common type of lung cancer.

The compound, called beta-lapachone, has shown promising anti-cancer properties and is currently being used in a clinical trial to examine its effectiveness against pancreatic cancer in humans. Until now, however, researchers didn’t know the mechanism of how the compound killed cancer cells.

Dr. David Boothman, a professor in the Harold C. Simmons Comprehensive Cancer Center and senior author of a study appearing online this week in the Proceedings of the National Academy of Sciences, has been researching the compound and how it causes cell death in cancerous cells for 15 years.

In the new study, Dr. Boothman and his colleagues in the Simmons Cancer Center found that beta-lapachone interacts with an enzyme called NQO1, which is present at high levels in non-small cell lung cancer and other solid tumors. In tumors, the compound is metabolized by NQO1 and produces cell death without damaging noncancerous tissues that do not express this enzyme.

“Basically, we have worked out the mechanism of action of beta-lapachone and devised a way of using that drug for individualized therapy,” said Dr. Boothman, who is also a professor of pharmacology and radiation oncology.

In healthy cells, NQO1 is either not present or is expressed at low levels. In contrast, certain cancer cells – like non-small cell lung cancer – overexpress the enzyme. Dr. Boothman and his colleagues have determined that when beta-lapachone interacts with NQO1, the cell kills itself. Non-small cell lung cancer is the most common type of lung cancer.

Beta-lapachone also disrupts the cancer cell’s ability to repair its DNA, ultimately leading to the cell’s demise. Applying radiation to tumor cells causes DNA damage, which results in a further boost in the amount of NQO1 in the cells.

“When you irradiate a tumor, the levels of NQO1 go up,” Dr. Boothman said. “When you then treat these cells with beta-lapachone, you get synergy between the enzyme and this agent and you get a whopping kill.”

In the current study, Dr. Boothman tested dosing methods on human tumor cells using a synthesized version of beta-lapachone and found that a high dose of the compound given for only two to four hours caused all the NQO1-containing cancer cells to die.

Understanding how beta-lapachone works to selectively kill chemotherapy-resistant tumor cells creates a new paradigm for the care of patients with non-small cell lung cancer, the researchers said. They are hoping that by using a drug like beta-lapachone, they can selectively target cancer tumors and kill them more efficiently. The current therapy for non-small cell lung cancer calls for the use of platinum-based drugs in combination with radiation.

“Future therapies based on beta-lapachone and NQO1 interaction have the potential to play a major role in treating devastating drug-resistant cancers such as non-small cell lung cancer,” said Dr. Erik Bey, lead author of the study and a postdoctoral researcher in the Simmons Cancer Center. “This is the first step in developing chemotherapeutic agents that exploit the proteins needed for a number of cellular processes, such as DNA repair and programmed cell death.”

About 85 percent of patients with non-small cell lung cancer have cancer cells containing elevated levels of the NQO1 enzyme, which is produced by a certain gene. Patients who have a different version of the gene would likely not benefit from treatment targeting NQO1, Dr. Boothman said.

Dr. Boothman cautioned that clinical trials of beta-lapachone in lung cancer patients will be needed to determine its effectiveness as a treatment. He and his team have created a simple blood test that would screen patients for the NQO1 enzyme.

Along with Dr. Jinming Gao’s laboratory in the Simmons Cancer Center and a joint collaboration with the bioengineering program at UT Dallas, researchers in the new “Cell Stress and Cancer Nanomedicine” initiative within the Simmons Cancer Center have developed novel nanoparticle drug delivery methods for the tumor-targeted delivery of this compound. These delivery methods have the promise of further improving this drug for non-small cell lung cancer.

Source: UT Southwestern Medical Center

Explore further: How defeating THOR could bring a hammer down on cancer

Related Stories

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

The immune cells that help tumors instead of destroying them

December 12, 2017
Lung cancer is the leading cause of cancer-associated deaths. One of the most promising ways to treat it is by immunotherapy, a strategy that turns the patient's immune system against the tumor. In the past twenty years, ...

Cancer gene plays key role in cystic fibrosis lung infections

December 12, 2017
PTEN is best known as a tumor suppressor, a type of protein that protects cells from growing uncontrollably and becoming cancerous. But according to a new study from Columbia University Medical Center (CUMC), PTEN has a second, ...

Scientists discover possible master switch for programming cancer immunotherapy

December 11, 2017
During infection or tumor growth, a type of specialized white blood cells called CD8+ T cells rapidly multiply within the spleen and lymph nodes and acquire the ability to kill diseased cells. Some of these killer T cells ...

Insights on how SHARPIN promotes cancer progression

December 11, 2017
Researchers at Sanford Burnham Prebys Medical Discovery (SBP) and the Technion in Israel have found a new role for the SHARPIN protein. In addition to being one of three proteins in the linear ubiquitin chain assembly complex ...

Recommended for you

Study prompts new ideas on cancers' origins

December 16, 2017
Rapidly dividing, yet aberrant stem cells are a major source of cancer. But a new study suggests that mature cells also play a key role in initiating cancer—a finding that could upend the way scientists think about the ...

What does hair loss have to teach us about cancer metastasis?

December 15, 2017
Understanding how cancer cells are able to metastasize—migrate from the primary tumor to distant sites in the body—and developing therapies to inhibit this process are the focus of many laboratories around the country. ...

Cancer immunotherapy may work better in patients with specific genes

December 15, 2017
Cancer cells arise when DNA is mutated, and these cells should be recognized as "foreign" by the immune system. However, cancer cells have found ways to evade detection by the immune system.

Scientists pinpoint gene to blame for poorer survival rate in early-onset breast cancer patients

December 15, 2017
A new study led by scientists at the University of Southampton has found that inherited variation in a particular gene may be to blame for the lower survival rate of patients diagnosed with early-onset breast cancer.

Scientists unlock structure of mTOR, a key cancer cell signaling protein

December 14, 2017
Researchers in the Sloan Kettering Institute have solved the structure of an important signaling molecule in cancer cells. They used a new technology called cryo-EM to visualize the structure in three dimensions. The detailed ...

'Bet hedging' explains the efficacy of many combination cancer therapies

December 14, 2017
The efficacy of many FDA-approved cancer drug combinations is not due to synergistic interactions between drugs, but rather to a form of "bet hedging," according to a new study published by Harvard Medical School researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.