A wider range of sounds for the deaf

June 8, 2007

More than three decades ago, scientists pursued the then-radical idea of implanting tiny electronic hearing devices in the inner ear to help profoundly deaf people. An even bolder alternative that promised superior results — implanting a device directly in the auditory nerve — was set aside as too difficult, given the technology of the day.

Now, however, scientists have shown in animals that it’s possible to implant a tiny, ultra-thin electrode array in the auditory nerve that can successfully transmit a wide range of sounds to the brain. The studies took place at the University of Michigan Kresge Hearing Research Institute.

If the idea pans out in further animal and human studies, profoundly and severely deaf people would have another option that could allow them to hear low-pitched sounds common in speech, converse in a noisy room, identify high and low voices, and appreciate music — areas where cochlea implants, though a boon, have significant limitations.

“In nearly every measure, these work better than cochlear implants,” says U-M researcher John C. Middlebrooks. He led a study requested by the National Institutes of Health to re-evaluate the potential of auditory nerve implants. Middlebrooks is a U-M Medical School professor of otolaryngology and biomedical engineering. He collaborated with Russell L. Snyder of the University of California, San Francisco and Utah State University. The two co-authored an article on the results in the June issue of Journal of the Association for Research in Otolaryngology.

The possible auditory nerve implants likely would be suitable for the same people who are candidates today for cochlear implants: the profoundly deaf, who can’t hear at all, and the severely deaf, whose hearing ability is greatly reduced. Also, the animal studies suggest that implantation of the devices has little impact on normal hearing, offering the possibility of restoring sensitivity to high frequencies while preserving remaining low-frequency hearing.

Middlebrooks says it’s possible that the low power requirements of the auditory nerve implants might lead to development of totally implantable devices. That would be an improvement over the external speech processor and battery pack cochlear implant users need to wear and often have to recharge daily.

If the initial success in animals is borne out in further tests, a human auditory nerve implant is probably five to 10 years away, he says.

The researchers used cats bred for laboratory use in their experiments. They measured brain processing of auditory signals in normal conditions, then compared deaf animals’ brain responses to sounds using cochlear implants and then the direct auditory nerve implants. These measurements employed neuron -monitoring technology developed earlier at U-M. The scientists found their sensitive 16-electrode microarray resulted in several advantages over cochlear implants.

Approved by the Food and Drug Administration in 1984, cochlear implants have greatly benefited profoundly and severely deaf people. More than 100,000 implants have been performed worldwide in the last two decades, including more than 1,000 at U-M.

Like the new device, cochlear implants are small electrode arrays that receive signals from an external sound processor... They are designed to stimulate the auditory nerve and other cells to produce a sensation of hearing. But their location, separated from auditory nerve fibers by fluid and a bony wall, is a limitation.

“Access to specific nerve fibers is blunted,” Middlebrooks says. “The effect is rather like talking to someone through a closed door.”

With the new intraneural stimulation procedure, that effect is eliminated, and there are other technical advantages, too. “The intimate contact of the array with the nerve fibers achieves more precise activation of fibers signaling specific frequencies, reduced electrical current requirements and dramatically reduced interference among electrodes when they are stimulated simultaneously,” Middlebrooks says.

Middlebrooks has talked with U-M surgeons in otolaryngology about surgical approaches in humans, and is working with U-M biomedical engineers on an intraneural device that can remain in place and be tested further in animals over the next two years. The devices need to be studied over time to see if they are safely tolerated by the auditory nerve.

“If our work continues to go very well, we might begin human trials in no less than five years,” Middlebrooks says.

Such a device might be used first in people whose cochleas are filled with bone and therefore aren’t eligible for a cochlear implant, or people whose cochlear implants are no longer effective.

The University of Michigan has submitted a patent application for the procedure. Through its Office of Technology Transfer, it is seeking a commercialization partner to assist in bringing the technology to market.

Source: University of Michigan Health System

Explore further: Deaf children learn words faster than hearing children

Related Stories

Deaf children learn words faster than hearing children

January 23, 2018
For many years scientists tinkered to find a perfect replacement for the damaged or dysplastic inner ear. Cochlear implants receive a sound, convert it into electrical stimuli and send these impulses directly to the auditory ...

Computer models of neuronal sound processing in the brain lead to cochlear implant improvements

December 2, 2013
Children learning to speak depend on functional hearing. So-called cochlear implants allow deaf people to hear again by stimulating the auditory nerve directly. Researchers at the Technische Universitaet Muenchen (TUM) are ...

Cochlear implants—with no exterior hardware

February 9, 2014
Cochlear implants—medical devices that electrically stimulate the auditory nerve—have granted at least limited hearing to hundreds of thousands of people worldwide who otherwise would be totally deaf. Existing versions ...

Researcher studies ways to enhance cochlear implants

February 8, 2017
What is hearing? For Valeriy Shafiro, PhD, that question is fundamental, even though it's one that most people who hear well may probably never think about.

Researchers identify best practices for cochlear implant hearing preservation

June 26, 2017
Cochlear implants that have electrodes designed without wire perform better than those with wires for long-term hearing preservation, a Mount Sinai researcher has reported in a first-of-its-kind study. The research also determined ...

Researchers developing device that could improve sound resolution for deaf individuals who opt for cochlear implants

April 5, 2013
(Medical Xpress)—The cochlear implant is widely considered to be the most successful neural prosthetic on the market. The implant, which helps deaf individuals perceive sound, translates auditory information into electrical ...

Recommended for you

Human 'chimeric' cells restore crucial protein in Duchenne muscular dystrophy

March 16, 2018
Cells made by fusing a normal human muscle cell with a muscle cell from a person with Duchenne muscular dystrophy —a rare but fatal form of muscular dystrophy—were able to significantly improve muscle function when implanted ...

Team develops 3-D tissue model of a developing human heart

March 16, 2018
The heart is the first organ to develop in the womb and the first cause of concern for many parents.

Democratizing science: Researchers make neuroscience experiments easier to share, reproduce

March 16, 2018
Over the past few years, scientists have faced a problem: They often cannot reproduce the results of experiments done by themselves or their peers.

Genetic variant discovery to help asthma sufferers

March 16, 2018
Research from the University of Liverpool, published today in Lancet Respiratory Medicine, identifies a genetic variant that could improve the safety and effectiveness of corticosteroids, drugs that are used to treat a range ...

Study identifies potential drug for treatment of debilitating inherited neurological disease

March 15, 2018
St. Jude Children's Research Hospital scientists have demonstrated in mouse studies that the neurological disease spinal bulbar muscular atrophy (SBMA) can be successfully treated with drugs. The finding paves the way for ...

Researchers say use of artificial intelligence in medicine raises ethical questions

March 15, 2018
In a perspective piece, Stanford researchers discuss the ethical implications of using machine-learning tools in making health care decisions for patients.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.