A brain chemical that battles despair

July 18, 2007

Researchers have identified a gene-regulating protein in the brains of mice that triggers the animals' ability to cope with the "behavioral despair" caused by inescapable stress. They said their studies have yielded an animal model of resilience that they will use to explore how antidepressants work on the brain circuitry involved in such stress response.

Led by Eric Nestler, the researchers published their findings in the July 19, 2007, issue of the journal Neuron, published by Cell Press.

In earlier studies, Nestler and his colleagues showed that exposure to repeated stress caused an increase in a protein called ∆FosB in the brain. This protein is a "transcription factor," a regulatory protein that controls the activity of multiple target genes.

In the new experiments, they sought to explore the role of ∆FosB in regulating adaptation to stress. Their approach involved first exposing mice to random shocks from which the animals could not escape. Such repeated exposure to inescapable stress tends to increase the lag time for mice to escape subsequent shocks, when they are given the chance to escape. Measuring this lag time, or the complete failure to escape, gave the researchers a measure of "behavioral despair." This experimental approach has long been used as an animal model of human "affective disorders" such as depression, posttraumatic stress disorder, and bipolar disorder. As in humans with such disorders, this behavioral despair in mice responds to antidepressants.

Nestler and colleagues discovered that the mice that showed the smallest lag in escape times also had higher levels of ∆FosB in a brain region involved in processing of pain signals and defensive responses. In contrast, animals with either longer escape lag times or failure to escape showed lower ∆FosB levels.

What's more, when the researchers introduced higher levels of the gene for ∆FosB into mice, they found it reduced the level of behavioral despair as reflected in their readiness to escape shocks.

The researchers also established that increased ∆FosB levels in the mice decreased the activity of the gene for a protein called "substance P¡" known to regulate processes such as mood, pain sensitivity, anxiety, and stress

"Our present results provide a fundamentally novel and testable model for the mechanisms of resilience," concluded the researchers. "Our future studies will test the hypothesis that antidepressant treatments may enhance resilience by stimulating these same adaptive processes which occur spontaneously in some, but not all, of the individuals in a population exposed to chronic stress," they wrote.

Source: Cell Press

Explore further: Staying awake—the surprisingly effective way to treat depression

Related Stories

Staying awake—the surprisingly effective way to treat depression

January 23, 2018
The first sign that something is happening is Angelina's hands. As she chats to the nurse in Italian, she begins to gesticulate, jabbing, moulding and circling the air with her fingers. As the minutes pass and Angelina becomes ...

Gatekeeper of brain steroid signals boosts emotional resilience to stress

April 23, 2012
A cellular protein called HDAC6, newly characterized as a gatekeeper of steroid biology in the brain, may provide a novel target for treating and preventing stress-linked disorders, such as depression and post-traumatic stress ...

Social stress messes up the hippocampus

December 3, 2015
How do you feel when you are stuck in a traffic jam for hours? Or when you are late for a flight? Or when you are waiting at the university hall to pass an exam? Obviously, you feel stressed, which might endanger your hippocampus ...

Study in mice places blame on immune system

March 1, 2016
Sustained stress erodes memory, and the immune system plays a key role in the cognitive impairment, according to a new study from researchers at The Ohio State University.

Stress-resilience, susceptibility traced to neurons in reward circuit

December 12, 2012
A specific pattern of neuronal firing in a brain reward circuit instantly rendered mice vulnerable to depression-like behavior induced by acute severe stress, a study supported by the National Institutes of Health has found. ...

Discovery hints at why stress is more devastating for some

September 2, 2014
Some people take stress in stride; others are done in by it. New research at Rockefeller University has identified the molecular mechanisms of this so-called stress gap in mice with very similar genetic backgrounds—a finding ...

Recommended for you

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Spare parts from small parts: Novel scaffolds to grow muscle

February 20, 2018
Australian biomedical engineers have successfully produced a 3D material that mimics nature to transform cells into muscle.

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.