Gene discovered for type 1 diabetes in children

July 15, 2007

Pediatrics researchers at The Children’s Hospital of Philadelphia and McGill University in Montreal have identified a gene variant that raises a child’s risk for type 1 diabetes, formerly called juvenile diabetes. As investigators continue to pinpoint genes contributing to diabetes, they have their eyes on providing a scientific basis for designing better treatments and preventive measures for the disease.

The research adds a new gene and new knowledge to the four genes previously discovered for type 1 diabetes, in which the immune system destroys insulin-producing beta cells in the pancreas and makes patients dependent on frequent insulin injections to keep the body’s blood sugar under control. As the project continues, the study team expects to identify additional genes (perhaps as many as 15 or 20) thought to interact with each other in the disease.

The study appeared July 15 in an advance online letter in the journal Nature.

“The genotyping technology we now have available has revolutionized the way we can ask and answer research questions,” said the study’s lead author, Hakon Hakonarson, M.D., Ph.D., the director of the Center for Applied Genomics at The Children’s Hospital of Philadelphia. “Unlike the previous technology, which was quite limited and dealt largely with relatively rare gene variants, we can now detect common genetic variants that are important in large numbers of individuals, and begin to understand how multiple genes interact in complex diseases such as diabetes.”

In the discovery phase of the study, the investigators examined the genomes of 1,046 children with type 1 diabetes. These DNA samples came from patients and families followed in pediatric diabetes clinics in Philadelphia and four Canadian cities. Specifically, the researchers compared the genomes of 563 patients with type 1 diabetes with those of 1,146 matched control subjects. Those results were combined with those obtained from an independent analysis of 483 family trios, in which the genomes of a child with the disease and both parents were examined.

The researchers confirmed the four previously identified locations for genes contributing to type 1 diabetes, but also uncovered a new type 1 diabetes locus on chromosome 16, occupied by a gene called KIAA0350. The team then replicated this discovery in yet another independent cohort of 1,333 children with the disease from the Type 1 Diabetes Genetics Consortium, which includes children of European descent in Europe, North America and Australia, as well as in 390 additional type 1 diabetes family trios from Canada.

Constantin Polychronakos, M.D., director of Pediatric Endocrinology at McGill University and senior author of the study, said that better knowledge of genes that predispose to type 1 diabetes may later enable physicians to screen newborns to predict those at high risk for the disease.

The gene implicated in the current research, KIAA0350, is known to be active almost exclusively in immune cells. Although scientists do not currently know the exact function of the protein the gene encodes, other research has predicted that it produces a protein called C-type lectin that is located on the surface of immune cells and binds to groups of sugars in the body.

“The role of KIAA0350 needs to be investigated,” said Hakonarson. “However, a special cell type called a natural killer (NK) cell expresses this gene abundantly, although at different levels based on these gene variants. Our hypothesis is that a special mutation in KIAA0350 may influence the sugar binding of the protein, and trigger an autoimmune response that activates these NK cells in such a way that they attack and destroy the islet cells in the pancreas, resulting in type 1 diabetes. A particular version of the gene protects against this inappropriate autoimmune response, while a different version of the gene makes it more likely to happen. ”

Although much research remains to be done, better understanding of the disease process may guide doctors to new and improved therapies. “If we know the gene pathways that give rise to type 1 diabetes, we hope to intervene early in life with targeted drugs or cell therapies to prevent the disease from developing,” said Polychronakos.

The current research used a technique called genome-wide association, in which highly automated analytic equipment rapidly scans each patient’s DNA for more than half a million genetic markers. It was performed at the Center for Applied Genomics at Children’s Hospital. The Center’s tools spell out a patient’s genotype—the specific pattern of variations among an individual’s 30,000 genes. Established in the summer of 2006, the center is taking on one of the largest genotyping projects in the world, and is the largest one dedicated to genetic analysis of childhood diseases.

“This study is the first one that our center has published on a gene associated with a complex childhood disease, but we have many projects under way and several other papers in press,” said Hakonarson. “Our goal at the Center is to discover the major disease-causing variants and genes that influence complex pediatric diseases, thus providing a scientific foundation that is based in biology for translating those discoveries into successful treatments.”

Among its current projects, the Center’s investigators are focused on identifying genes involved in pediatric asthma, allergy, obesity, attention-deficit hyperactivity disorder, autism, inflammatory bowel disease, hypertension, juvenile rheumatoid arthritis and the pediatric cancer neuroblastoma. The Center recently contributed 4,000 DNA samples to an industry-hosted database that serves as a free repository of control samples for researchers seeking gene variations in diseases.

Source: Children's Hospital of Philadelphia

Explore further: How genes and environment interact to raise risk of congenital heart defects

Related Stories

How genes and environment interact to raise risk of congenital heart defects

October 19, 2017
Infants of mothers with diabetes have a three- to five-fold increased risk of congenital heart defects. Such developmental defects are likely caused by a combination of genetic and environmental factors. However, the molecular ...

Recognising monogenic diabetes is vital for its management

October 16, 2017
Distinguishing monogenic diabetes in the young – that is, a rare type of diabetes caused by a single genetic mutation relatively early in life—from other types of diabetes, is crucial for appropriate therapies, prognosis ...

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

Physical inactivity and restless sleep exacerbate genetic risk of obesity

October 20, 2017
Low levels of physical activity and inefficient sleep patterns intensify the effects of genetic risk factors for obesity, according to results of a large-scale study presented at the American Society of Human Genetics (ASHG) ...

On-and-off fasting helps fight obesity

October 17, 2017
Up to sixteen weeks of intermittent fasting without otherwise having to count calories helps fight obesity and other metabolic disorders. Such fasting already shows benefits after only six weeks. This is according to a study ...

New type of diabetes caused by a genetic mutation

October 12, 2017
Scientists from the ULB Center for Diabetes Research and the Erasmus Hospital of the ULB, together with colleagues at the University of Exeter (UK), University of Helsinki (Finland) and Kyoto University (Japan), have identified ...

Recommended for you

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

New clues to treat Alagille syndrome from zebrafish

October 18, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies potential new therapeutic avenues for patients with Alagille syndrome. The discovery, published in Nature Communications, ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.