Genetics of imatinib resistance in acute lymphoblastic leukemia

August 30, 2007

In the September 15th issue of Genes & Development, Drs. Richard T. Williams, Willem den Besten, and Charles J. Sherr at Howard Hughes Medical Institute, St. Jude Children’s Research Hospital in Memphis TN, lend new insights into how an aggressive form of acute lymphoblastic leukemia (ALL) develops, and how sensitivity to the targeted chemotherapeutic drug, imatinib, can be diminished through interactions between tumor cells and the host microenvironment.

ALL, a cancer of the bone marrow affecting 4,000 US residents annually, is characterized by the over-production of immature white blood cells. An aggressive form of ALL results from a chromosomal translocation, known as the Philadelphia chromosome (Ph), in which segments from chromosomes 9 and 22 are aberrantly fused together. Ph+ ALL is far more prevalent in adults (~30% of adult ALL) than in children (~4% of pediatric ALL), but it carries a poor prognosis in both age groups. Ph+ cells express a protein (encoded by an oncogene created by the chromosome fusion) called BCR-ABL. BCR-ABL is a constitutively active enzyme, a tyrosine kinase, which promotes uncontrolled cell proliferation.

Continuous treatment with the BCR-ABL tyrosine kinase inhibitor, imatinib, has revolutionized the therapy of another form of Ph+ cancer, chronic myelogenous leukemia (CML), by inducing durable remissions. However, the response of Ph+ ALL patients is not nearly as good, leading to shorter remissions and more rapid emergence of imatinib resistance. In general, Ph+ CML and ALL patients that fail imatinib therapy develop mutations in the BCR-ABL kinase that make them drug-resistant, but the reasons underlying the increased rate of emergence of mutant clones in Ph+ ALL has not been satisfactorily explained.

Williams and colleagues tracked the development of imatinib resistance, using a mouse model of Ph+ ALL. They engineered BCR-ABL-expressing lymphocyte progenitors that also lack the tumor suppressor protein ARF (which is deleted in more than 30% of Ph+ ALL patients, but not in CML patients, at their time of diagnosis). Interestingly, ARF-deficient lymphocytes expressing BCR-ABL were so highly aggressive that inoculation of as few as 20 such cells into healthy mice induced fatal ALL in less than 3 weeks. “Although experiments with CML support the concept that these leukemias arise from a rare population of ‘cancer stem cells’, our work on Ph+ ALL emphasizes that this need not be the case,” says Williams.

Further genetic experiments revealed that signals from the bone marrow micro-environment of the host animals were able to sustain the viability of ARF-deficient leukemia cells in the face of imatinib therapy. “We suspect that similar signals may nurture ARF-deficient Ph+ ALL cells in patients,” says Sherr, “thereby allowing the rapid emergence of imatinib-resistant clones.”

Source: Cold Spring Harbor Lab

Explore further: To beat leukemia, boost cell signaling, study suggests

Related Stories

To beat leukemia, boost cell signaling, study suggests

March 26, 2015
A new study of acute lymphoblastic leukemia (ALL) led by UC San Francisco researchers puts an intriguing new twist on anti-cancer strategies. Rather than inhibiting cellular signals that arise from a cancer-driving gene—the ...

Proof-of principle study finds imatinib improves symptoms for patients with severe asthma

May 17, 2017
Mast cells, a type of white blood cell, are present in the airways of severe asthmatics even in the face of aggressive treatment, and their presence is associated with key indicators of severe asthma. It has long been thought ...

Prevalence of Ph-like ALL in adults underscores need for genetic testing, clinical trials

November 21, 2016
A high-risk subtype of acute lymphoblastic leukemia (ALL) first identified in children is highly prevalent in adults with ALL and is associated with a poor outcome, according to an international collaboration led by St. Jude ...

First comprehensive DNA study of mast cell leukemia uncovers clues that could improve therapy

December 16, 2011
Cancer researchers at Cold Spring Harbor Laboratory (CSHL) have carried out the first comprehensive study of the changes seen in the DNA of a patient with mast cell leukemia (MCL), an extremely aggressive subtype of acute ...

Options increase for CML patients failed by existing drugs

December 21, 2012
The U.S. Food and Drug Administration (FDA) this month expanded the options for patients with chronic myeloid leukemia and one form of acute lymphoblastic leukemia that carries the Philadelphia chromosome (Ph+ALL). It approved ...

Existing drugs offer new treatment options for high-risk childhood leukemia subtype

August 13, 2012
Scientists have identified new genetic alterations underlying a high-risk subtype of the most common childhood cancer that could be effectively targeted with existing leukemia therapies.

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.