Social habits of cells may hold key to fighting diseases

August 23, 2007

Scientists in Manchester are working to change the social habits of living cells – an innovation that could bring about cleaner and greener fuel and help fight diseases such as cancer and diabetes.

As part of a new £18 million project spanning six countries, The Manchester Centre for Integrative Systems Biology at The University of Manchester will spearhead important new research into an emerging field of science and engineering known as Systems Biology.

Scientists have recently discovered that networking in living cells may determine whether a cell causes diabetes or cancer or helps to maintain our health.

By adjusting and modifying the way cells network, researchers believe it’s possible to adjust the behaviour of living cells and reduce the chances of disease occurring.

Using this approach Manchester researchers working on the Systems Biology of Microorganisms (SysMO) research programme will also drive a project that looks at how the yeast used in the production of beer and bread can be turned into an efficient producer of bioethanol.

Other work to be carried out in Manchester includes the investigation of ‘lactobacilli’. Some of these occasionally turn into flesh-eating bacteria or cause human diseases such as strep throat and rashes, whereas others are completely safe and are used in the production of cheeses and yoghurts.

It’s hoped the work will lead not only to greater understanding of how ‘wrong’ networks lead to disease, but also to the production of drugs and other foods more efficiently and safely.

Academics will also look at ‘pseudomonads’ – soil bacteria that may make people ill but can also be used to degrade nasty compounds in the environment, or to create compounds now being made by chemical industries.

Researchers will also focus on ‘thermophilic’ organisms that live naturally in hot springs, and examine how their networks enable them to survive high and varying temperatures. It’s hoped that this research will reveal how to make any living organism cope better with extreme conditions. It may also lead to better performance of detergents and cosmetics.

All research will be carried out in the Manchester Interdisciplinary Biocentre (MIB) – a unique, purpose-built, £38m facility that brings together experts from a wide range of disciplines in order to tackle major challenges in quantitative, interdisciplinary bioscience.

Professor Douglas Kell, Director of the MCISB, said: “Manchester is a leading centre for Systems Biology research and it is very exciting that so many of the SysMO projects have a Manchester component. Our involvement in these projects will allow us to achieve much added value and to develop and show best practice across all of them.”

Professor Hans Westerhoff, AstraZeneca Professor of Systems Biology and Director of the Doctoral Training Centre on Systems Biology at The University of Manchester, said: “This is a unique opportunity to begin to understand how networking contributes to the functioning of living cells inside and outside our bodies.

“It enables us to integrate the best groups from six European countries and will address four concrete issues of energy, the disease-benefit balance, white biotechnology and robustness.”

Systems Biology combines molecular biology and mathematics, which have traditionally been seen as the equivalents of fire and water. This type of research is still viewed as controversial by some in the scientific community.

But researchers involved in SysMO believe this approach will allow them to obtain a very large set of mathematical equations that describe living cells. This may then allow those cells to be engineered in a number of ways, with numerous benefits in the field of medicine and in the commercial world.

Source: University of Manchester

Explore further: Osteoarthritis could be treated as two diseases, scientists reveal

Related Stories

Osteoarthritis could be treated as two diseases, scientists reveal

January 10, 2018
Scientists at The University of Manchester have discovered that most people with osteoarthritis can be subdivided into two distinct disease groups, with implications for diagnosis and drug development.

Queen's University Belfast leads study to transform prostate cancer treatment

October 23, 2017
Queen's University Belfast has led the world's largest research study using a diagnostic test developed by Almac Diagnostics, to better understand the biology of prostate cancer tumours, which could lead to a transformation ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Time of day affects test results for asthma, researchers find

December 8, 2017
New research presented today (Friday 8th December) at the British Thoracic Society Winter Meeting shows the human body clock significantly impacts on sample results used to diagnose and treat asthma when taken at different ...

Our body clocks cause wounds sustained at night to heal more slowly

November 8, 2017
A new study has discovered how our body clocks cause wounds, such as cuts and burns, to heal approximately 60% faster if the injury happens during the day rather than at night.

Tiny robots step closer to treating hard-to-reach parts of the body

November 22, 2017
Tiny remotely operated robots could be designed to diagnose and treat illness in hard-to-reach areas of the human body, research suggests.

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.