Brain center for 'sound space' identified

September 19, 2007

While the visual regions of the brain have been intensively mapped, many important regions for auditory processing remain terra incognita. Now, researchers have identified the region responsible for a key auditory process—perceiving “sound space,” the location of sounds. The findings settle a controversy in earlier studies that failed to establish the auditory region, called the planum temporale, as responsible for perceiving auditory space.

Leon Y. Deouell and colleagues published their findings in the September 20, 2007 issue of the journal Neuron.

Studies by other researchers had shown that the planum temporale was activated when people were asked to perform tasks in which they located sounds in space. However, many researchers believed that the region was responsible only for intentional processing of such information. And in fact, previous studies had failed to establish that the planum temporale was responsible for automatic, nonintentional representation of spatial location.

However, Deouell and colleagues used an improved experimental design that enabled them to more sensitively determine the brain’s auditory spatial location center. For example, they presented their human subjects with sounds against a background of silence, used headphones that more accurately reproduced sound location, used noise with a rich spectrum which has been shown to be more readily locatable in space, and created an individually tailored sound space for each subject by using sounds previously recorded directly from the subjects’ own ears.

In their experiments, they presented bursts of the noise to the volunteers wearing the headphones while the subjects’ brains were scanned by functional magnetic resonance imaging. In this widely used brain-scanning technique, harmless magnetic fields and radio waves are used to image blood flow in brain regions, which reflects brain activity in those locations.

The subjects were instructed to ignore the sounds. And, to divert their attention, they either watched a movie with the sound turned off or were given a simple button-pushing task.

When the position of the noise bursts was varied in space, the researchers found that the planum temporale in the subjects’ brain was, indeed, activated. What’s more, the greater the number of distinct sound locations subjects heard during test runs, the greater the activity in the planum temporale.

The researchers concluded that their experiments “suggest that neurons in this region represent, in a nonintentional or preattentive fashion, the location of sound sources in the environment.” They wrote that “Space representation in this region may provide the neural substrate needed for an orientation response to critical auditory events and for linking auditory information with information acquired through other modalities.”

Source: Cell Press

Explore further: Decoding biological asymmetry

Related Stories

Decoding biological asymmetry

July 12, 2016
Our bodies, our behaviour, but also our brains are anything other than symmetrical. And that seems to be an important factor in the seamless functioning of our thought, speech and motor faculties. Researchers at the Max Planck ...

Is there a central brain area for hearing melodies and speech cues? Still an open question

November 29, 2011
Previous studies have suggested a particular hotspot in the brain might be responsible for perceiving pitch, but auditory neuroscientists are still debating whether this "pitch center" actually exists. A review article discusses ...

Recommended for you

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.