Brain's timing linked with timescales of the natural visual world

September 5, 2007

Researchers have long attempted to unravel the cryptic code used by the neurons of the brain to represent our visual world. By studying the way the brain rapidly and precisely encodes natural visual events that occur on a slower timescale, a team of Harvard bioengineers and brain scientists from the State University of New York have moved one step closer towards solving this riddle. The findings were reported in a September 6th Nature article.

“Visual perception is limited by the relatively slow way in which the neurons in our eyes integrate light. This is why, for example, a Hollywood movie consisting of a series of flickering images appears to us as seamless motion,” explains Garrett Stanley, Associate Professor of Biomedical Engineering at the Harvard School of Engineering and Applied Sciences. “However, when the brain responds to some kind of visual event, such as a ball bouncing, the activity of the neurons responsible for sending information can be precise down to the millisecond, despite the fact that the motion of the ball is much slower.”

To determine why the brain might encode visual information with such precision, the researchers relied on data obtained by directly recording neuronal activity in animals while they viewed natural scene movies. Doing so enabled Garrett and his colleagues to pinpoint the pattern of neuronal firings in cells that respond to form and motion.

Their analysis of the data suggests that the brain’s timescale depends on the nature of the visual stimulus. In other words, the precise timing of the neurons (i.e. their internal clock) changes relative to the timescale of the visual scene. For example, a faster bouncing ball results in more precise brain activity than a slower one. In each case, however, the precision of the neurons’ activity was several times that of the speed of the bouncing ball.

It turns out that the extreme precision of the brain’s neural response to visual stimuli is, paradoxically, necessary to accurately represent the more slowly changing visual world. The neuron’s response must be more precise to recover the important aspects of the visual environment.

“We believe that this type of relative precision may be a general feature of sensory neuron communication,” says Stanley. “You can think of it like digital sampling used for audio recordings. The brain ‘digitizes’ the visual stimulus. As with digital audio recordings, for clear and representational ‘playback’, the encoding frequencies must be at least double that of the signal information.”

In future research, the researchers plan to further clarify why and how the brain encodes visual information across larger networks of cells and across functional units of the brain. They also will investigate how the visual pathway of the brain adapts to changes in the visual scene. They believe cracking the neural code will help other scientists and engineers better “communicate” with the brain. Understanding the speed at which the brain encodes information is critical for designing interfaces such as neural prosthetics, that seek to augment or replace brain function lost to trauma or disease.

Source: Harvard University

Explore further: Glowing cancer tool illuminates benign, but dangerous, brain tumors during pituitary surgery

Related Stories

Glowing cancer tool illuminates benign, but dangerous, brain tumors during pituitary surgery

September 5, 2017
An experimental imaging tool that uses a targeted fluorescent dye successfully lit up the benign brain tumors of patients during removal surgery, allowing surgeons to identify tumor tissue, a new study from researchers at ...

Meeting the disguised face challenge via deep convolutional network

September 9, 2017
(Tech Xplore)—Catch me if you can. Fearless criminals on the run from the law grab their hats, fake beards and dark glasses to shake off cameras and detectives. Old ploy. New technology advances, though, are making them ...

Determining motor deficits more precisely following a stroke

September 6, 2017
After a stroke, many people are unable to successfully perform basic hand movements in everyday life. The reason are symptoms of hemiparesis resulting from damage to the brain. These very frequently affect fine motor skills. ...

How video goggles and a tiny implant could cure blindness

August 25, 2017
At 16, Lynda Johnson was ready to learn how to drive. Yes, she had a progressive eye disease, retinitis pigmentosa, which already had stolen her night vision. But throughout her childhood, the Millbrae, California, girl had ...

Emoji fans take heart: Scientists pinpoint 27 states of emotion

September 7, 2017
The Emoji Movie, in which the protagonist can't help but express a wide variety of emotions instead of the one assigned to him, may have gotten something right. A new study from the University of California, Berkeley, challenges ...

How the brain recognizes familiar faces

August 10, 2017
There's nothing quite like the rush of recognition that comes from seeing a familiar face. But scientists have been hard-pressed to explain how we identify well-known faces—or how that process differs from the way we perceive ...

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.