Brain's messengers could be regulated, researchers find

September 17, 2007
Brain's messengers could be regulated, researchers find
J. Troy Littleton, a professor in the Picower Institute for Learning and Memory at MIT, joins biology graduate student Sarah N. Huntwork in the lab. They have created the first genetically-engineered mutant--in this case a fruit fly--that produces no complexins (proteins that play a role in the release of neuro-transmitters) during cell-to-cell signaling. Photo / Donna Coveney

Researchers at MIT's Picower Institute for Learning and Memory have found that tiny, spontaneous releases of the brain's primary chemical messengers can be regulated, potentially giving scientists unprecedented control over how the brain is wired.

The work, reported in the Sept. 16 early online edition of Nature Neuroscience, could lead to a better understanding of neurological diseases like schizophrenia.

Sputtering electrical activity--like a firecracker's leftover sparks after a big bang--was long considered inconsequential background noise compared with the main cell-to-cell interactions underlying thought and memory.

But lead author J. Troy Littleton, Fred and Carole Middleton Associate Professor of Biology at MIT, and colleagues found that the miniscule events that follow a burst of electrical and chemical activity among neurons are far more important that previously thought. A breakdown in this molecular mechanism could be the culprit in schizophrenia and other neurological diseases, the authors reported.

Neurons communicate with one another through chemical junctions called synapses. Key to the system are complexins. These small proteins play a role in the release of the brain's chemical messengers, or neurotransmitters, during synaptic cell-to-cell signaling.

To figure out exactly how complexins work, Littleton created the first genetically engineered mutant--in this case, a fruit fly--that produces no complexins at all.

There are two sides to synaptic transmission--pre-synaptic and post-synaptic. When an electrical nerve impulse zaps the pre-synaptic side, it triggers lightning-fast events that release neurotransmitters. This activates the post-synaptic cell. Mission accomplished: The foundation of a memory is formed.

The neurotransmitters are like racehorses. They champ at the bit until they get the signal to dash toward the finish line. On the pre-synaptic side, small compartments, or vesicles, containing neurotransmitters are the starting block, and complexins are the gatekeepers that prevent the neurotransmitters from releasing prematurely.

After a big burst of electrical activity sends out a flood of neurotransmitters, a few vesicles still produce some neurotransmitter. The MIT work explains the molecular machinery behind these "minis," which can occur for a few minutes after the big event. Without complexin as a gatekeeper, minis occur unchecked, leading to massive rewiring and synaptic growth.

"This spontaneous release in the brain is not only important for signaling, it can trigger synaptic growth," Littleton said. "What's really exciting is that complexin's activity may be regulated. If we can regulate this machinery, we may be able to promote synaptic growth and potentially allow targeted rewiring in areas of the brain affected in various neurological diseases."

Littleton also holds an appointment in MIT's Department of Brain and Cognitive Sciences.

Biology graduate student Sarah N. Huntwork coauthored the Nature Neuroscience paper.

Source: MIT

Explore further: New mechanism behind Parkinson's disease revealed

Related Stories

New mechanism behind Parkinson's disease revealed

June 5, 2017

Parkinson's disease is a debilitating neurological illness that affects approximately 10 million people worldwide. It is marked by a progressive decline in physical function, the most iconic being uncontrollable tremors, ...

A docking site per calcium channel cluster

June 14, 2017

A study co-led by Ryuichi Shigemoto and Alain Marty concludes that a single docking site may use a single cluster of calcium channels, and that both the number of docking sites and the number of calcium clusters change in ...

Recommended for you

Tiny bubbles offer sound solution for drug delivery

June 25, 2017

Your brain is armored. It lives in a box made of bones with a security system of vessels. These vessels protect the brain and central nervous system from harmful chemicals circulating in the blood. Yet this protection system—known ...

Lab grown human colons change study of GI disease

June 22, 2017

Scientists used human pluripotent stem cells to generate human embryonic colons in a laboratory that function much like natural human tissues when transplanted into mice, according to research published June 22 in Cell Stem ...

Paracetamol during pregnancy can inhibit masculinity

June 22, 2017

Paracetamol is popular for relieving pain. But if you are pregnant, you should think twice before popping these pills according to the researchers in a new study. In an animal model, Paracetamol, which is the pain-relieving ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.