Brain's messengers could be regulated, researchers find

September 17, 2007
Brain's messengers could be regulated, researchers find
J. Troy Littleton, a professor in the Picower Institute for Learning and Memory at MIT, joins biology graduate student Sarah N. Huntwork in the lab. They have created the first genetically-engineered mutant--in this case a fruit fly--that produces no complexins (proteins that play a role in the release of neuro-transmitters) during cell-to-cell signaling. Photo / Donna Coveney

Researchers at MIT's Picower Institute for Learning and Memory have found that tiny, spontaneous releases of the brain's primary chemical messengers can be regulated, potentially giving scientists unprecedented control over how the brain is wired.

The work, reported in the Sept. 16 early online edition of Nature Neuroscience, could lead to a better understanding of neurological diseases like schizophrenia.

Sputtering electrical activity--like a firecracker's leftover sparks after a big bang--was long considered inconsequential background noise compared with the main cell-to-cell interactions underlying thought and memory.

But lead author J. Troy Littleton, Fred and Carole Middleton Associate Professor of Biology at MIT, and colleagues found that the miniscule events that follow a burst of electrical and chemical activity among neurons are far more important that previously thought. A breakdown in this molecular mechanism could be the culprit in schizophrenia and other neurological diseases, the authors reported.

Neurons communicate with one another through chemical junctions called synapses. Key to the system are complexins. These small proteins play a role in the release of the brain's chemical messengers, or neurotransmitters, during synaptic cell-to-cell signaling.

To figure out exactly how complexins work, Littleton created the first genetically engineered mutant--in this case, a fruit fly--that produces no complexins at all.

There are two sides to synaptic transmission--pre-synaptic and post-synaptic. When an electrical nerve impulse zaps the pre-synaptic side, it triggers lightning-fast events that release neurotransmitters. This activates the post-synaptic cell. Mission accomplished: The foundation of a memory is formed.

The neurotransmitters are like racehorses. They champ at the bit until they get the signal to dash toward the finish line. On the pre-synaptic side, small compartments, or vesicles, containing neurotransmitters are the starting block, and complexins are the gatekeepers that prevent the neurotransmitters from releasing prematurely.

After a big burst of electrical activity sends out a flood of neurotransmitters, a few vesicles still produce some neurotransmitter. The MIT work explains the molecular machinery behind these "minis," which can occur for a few minutes after the big event. Without complexin as a gatekeeper, minis occur unchecked, leading to massive rewiring and synaptic growth.

"This spontaneous release in the brain is not only important for signaling, it can trigger synaptic growth," Littleton said. "What's really exciting is that complexin's activity may be regulated. If we can regulate this machinery, we may be able to promote synaptic growth and potentially allow targeted rewiring in areas of the brain affected in various neurological diseases."

Littleton also holds an appointment in MIT's Department of Brain and Cognitive Sciences.

Biology graduate student Sarah N. Huntwork coauthored the Nature Neuroscience paper.

Source: MIT

Explore further: Researchers define function of an enigmatic synaptic protein

Related Stories

Researchers define function of an enigmatic synaptic protein

November 21, 2017
In the brains, neurons communicate by sending chemical signals across synapses. The molecular machinery required to send a signal involves not only the neurotransmitter signal itself, but a large variety of other proteins ...

Identification of a key molecule for the neurotransmitter release in synapses

September 4, 2017
The contact areas between nerve cells are called synapses. What happens there lies at the heart of communication between nerve cells. Communication starts with the release of chemical messengers known as neurotransmitters ...

3-D protein structure offers insight into rapid communication by brain cells

September 13, 2017
New HHMI research reveals how three proteins help brain cells synchronize the release of chemical signals. A similar interaction may play a role in how cells secrete insulin and airway mucus, too.

Treating depression—an expert discusses risks, benefits of ketamine

October 20, 2017
Up to a third of patients with depression don't respond to traditional forms of treatment. For those patients, the dark fog that hovers over their lives feels like it will never lift. But a new treatment called ketamine has ...

Researchers make significant advance in understanding calcium channel control of neurotransmitter release

August 8, 2017
A new study conducted by researchers at the Max Planck Florida Institute for Neuroscience uncovers critical aspects of calcium channel function, overturning prevailing theories that explain variability in neurotransmitter ...

How our nerves keep firing: Biologists see ultrafast recycling of neurotransmitter-filled bubbles

December 4, 2013
University of Utah and German biologists discovered how nerve cells recycle tiny bubbles or "vesicles" that send chemical nerve signals from one cell to the next. The process is much faster and different than two previously ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.