Brain network related to intelligence identified

September 11, 2007
Brain Areas Important to Intelligence
The photo illustration shows brain areas important to intelligence. Credit: UCI

A primary mystery puzzling neuroscientists -- where in the brain lies intelligence" -- just may have a unified answer.

In a review of 37 imaging studies related to intelligence, including their own, Richard Haier of the University of California, Irvine and Rex Jung of the University of New Mexico have uncovered evidence of a distinct neurobiology of human intelligence. Their Parieto-Frontal Integration Theory (P-FIT) identifies a brain network related to intelligence, one that primarily involves areas in the frontal and the parietal lobes.

Their report includes peer commentary from 19 researchers and appears online in the journal Behavioral and Brain Sciences.

“Recent neuroscience studies suggest that intelligence is related to how well information travels throughout the brain,” said Haier, a professor of psychology in the School of Medicine and longtime human intelligence researcher. “Our review of imaging studies identifies the stations along the routes intelligent information processing takes. Once we know where the stations are, we can study how they relate to intelligence.”

The data suggest that some of the brain areas related to intelligence are the same areas related to attention and memory and to more complex functions like language. Haier and Jung say this possible integration of cognitive functions suggests that intelligence levels might be based on how efficient the frontal-parietal networks process information.

Brain imaging studies of intelligence are relatively new, with Haier doing some of the first ones only 20 years ago. Although there is still discussion about how to define and measure intelligence, Haier and Jung found surprising consistency in the studies they reviewed despite the fact the studies represented a variety of approaches.

In his peer commentary, University of Washington psychologist Earl Hunt writes: “The Jung & Haier P-FIT model shows how far we have progressed toward understanding the biological basis of intelligence. Twenty-five years ago researchers in the field were engaged in an unedifying discussion of the relation between skull sizes and intelligence test scores. By taking advantage of the huge advances in measurement of the brain that have occurred in the past quarter century, [Jung and Haier] can take the far more sophisticated view that individual differences in intelligence depend, in part, upon individual differences in specific areas of the brain and in the connections between them.”

Haier and Jung have made some of the seminal findings in intelligence studies. In a 2004 study, they found that regions related to general intelligence are located throughout the brain and that a single “intelligence center,” such as the frontal lobe, is unlikely. And in a 2005 study, they found that while there are essentially no disparities in general intelligence between the sexes, women have more white matter and men more gray matter related to intelligence test scores, suggesting that no single neuroanatomical structure determines general intelligence and that different types of brain designs can produce equivalent intellectual performance.

“Genetic research has demonstrated that intelligence levels can be inherited, and since genes work through biology, there must be a biological basis for intelligence,” Haier said. “We have a long way to go before we understand the details, but our P-FIT model provides a framework for testing new hypotheses in future experiments.”

Source: University of California - Irvine

Explore further: Is it possible to boost your intelligence by training? We reviewed three decades of research

Related Stories

Is it possible to boost your intelligence by training? We reviewed three decades of research

November 21, 2017
Scientists achieved astonishing results when training a student with a memory training programme in a landmark experiment in 1982. After 44 weeks of practice, the student, dubbed SF, expanded his ability to remember digits ...

New theory of how the brain transforms sensations into mental objects

November 15, 2017
Inputs to the brain from the eyes, ears, and skin are continually changing as we move. Yet our brain perceives objects in the world as stable. How the brain learns the structure of the world from rapidly changing inputs is ...

Brain imaging science identifies individuals with suicidal thoughts

October 30, 2017
Researchers led by Carnegie Mellon University's Marcel Just and the University of Pittsburgh's David Brent have developed an innovative and promising approach to identify suicidal individuals by analyzing the alterations ...

Electron microscopy uncovers unexpected connections in fruit fly brain

November 3, 2017
What was once thought to be a done-and-dusted map of the fruit fly brain has gotten a second look, and researchers have discovered that it's actually not done at all.

Researchers uncover genetic basis of natural variation in aging rate

November 10, 2017
Aging is characterized by a progressive decline in physiological functions and is a major risk factor for neurodegenerative disorders, cancer and diabetes. Previous studies on aging mainly focused on the regulation of longevity, ...

Nutrition has benefits for brain network organization, new research finds

September 7, 2017
Nutrition has been linked to cognitive performance, but researchers have not pinpointed what underlies the connection. A new study by University of Illinois researchers found that monounsaturated fatty acids - a class of ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.