Study suggests brain tumors need treatment with multiple 'targeted' drugs

September 13, 2007

Researchers at Dana-Farber Cancer Institute have shown that several, rather than just one, cell-growth switches are simultaneously overactive in many brain tumors and other solid tumors, explaining why treatment with just a single "targeted" switch-blocking drug often yields disappointing results.

The laboratory finding argues for quickly moving to clinical trials that combine three or more such targeted drugs for such cancers to shut down all the malfunctioning growth switches, according to the team led by Ronald DePinho, MD, director of the Center for Applied Cancer Science at the Dana-Farber. Their report is being posted online on Sept. 13 by the journal Science and will appear in a forthcoming print issue.

The switches are formed by molecules called receptor tyrosine kinases (RTKs) that often are mutated and hyperactive in cancer cells. Since a number of kinase-blocking drugs are already available -- Gleevec and Tarceva are two of the best-known -- the researchers said clinical trials of combinations of the compounds should be planned quickly.

"This is a transformative finding that will motivate clinicians and our pharmaceutical colleagues to design clinical trials with regimens using several inhibitors," said DePinho. He noted that in the laboratory study using cancer cell lines and fresh specimens of brain tumors, three or more kinase inhibitors were needed to quell the abnormal cell-growth signals.

The study focused on glioblastoma multiforme (GBM), an aggressive brain tumor that is nearly always fatal. The scientists also found similar patterns of multiply activated RTKs in other common cancers of the pancreas and lung.

Jayne Stommel, PhD, lead author of the report and a post-doctoral fellow in the DePinho lab, undertook a survey of molecular RTK "signaling pathways" in GBM cells to find the sources of abnormal growth.

RTKs are located on the surface of both normal and cancerous cells and receive signals from the cells' environment. Many of the signals are chemical "growth factors" directing the cell to divide and grow. Signals received by the RTKs are transmitted to the cell's nucleus via a pathway called PI3K, which often behaves abnormally in cancer cells.

At least 54 RTKs have been identified, and some, such as epidermal growth factor receptor (EGFR) have been implicated in glioblastomas. However, drugs that block EGFR have had limited success in delaying the progression of these and other virulent tumors. "Typically one elicits a positive initial response, but rarely durable cures," said DePinho, who is also a professor of medicine at Harvard Medical School. "Overall, the record of receptor tyrosine kinases inhibitors in these brain tumors has been somewhat disappointing."

Perhaps the problem was that other kinase pathways were also sending abnormal growth signals, acting as a redundant or backup source of growth simulation. "No one had looked to see how many receptor tyrosine kinases are activated at the same time in these cells," said Stommel.

The researchers tested 20 glioblastoma cell lines using an antibody array technique that measured the activation of 45 different RTKs at one time. In 19 of the 20 cell lines, three or more RTKs were activated at the same time, sending abnormal growth signals in triplicate to the nucleus. Moving from cell lines to fresh cells, the researchers saw the same multiple-RTK activity when they studied tumor samples from newly diagnosed patients.

The kinase inhibitor imatinib (Gleevec) had little effect on the errant signaling pathways when applied to the brain tumor cells. But when imatinib was given in combination with two other kinase inhibitors, erlotinib (Tarceva) and SU11274, traffic in the PI3K signaling pathway was eliminated, and the cancer cells died.

The study's findings "provide a rational explanation for the feeble clinical responses" when RTK inhibitors are given singly to patients with solid tumors, the investigators wrote, and suggest that combination therapy should yield better results.

In addition, patients' tumors can be profiled to identify which among the many RTK switches are activated, so that tailored therapy with the appropriate combination of inhibitors can be prescribed.

"This study provides proof of concept for the eventual implementation of a 'personalized' therapeutic paradigm in human cancer," the researchers concluded.

Source: Dana-Farber Cancer Institute

Explore further: Cancer risk associated with key epigenetic changes occurring through normal aging process

Related Stories

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

Team develops new technology platform for cancer immunotherapy

February 22, 2018
Johns Hopkins researchers have invented a new class of immunotherapeutic agents that are more effective at harnessing the power of the immune system to fight cancer. Their approach results in significant inhibition of tumor ...

NEJM reports positive results for larotrectinib against TRK-fusion cancer

February 22, 2018
In 2013, the labs of University of Colorado Cancer Center investigator Robert C. Doebele, MD, PhD, and Dana-Farber Cancer Institute investigator Pasi A. Jänne, MD, PhD reported in Nature Medicine the presence of TRK gene ...

New therapeutic gel shows promise against cancerous tumors

February 21, 2018
Scientists at the UNC School of Medicine and NC State have created an injectable gel-like scaffold that can hold combination chemo-immunotherapeutic drugs and deliver them locally to tumors in a sequential manner. The results ...

'Local environment' plays key role in breast cancer progression

February 21, 2018
Breast cancer is the most commonly diagnosed cancer in women—one in eight (12.4 percent) in the U.S. will be diagnosed with it. Invasive breast cancer is dangerous for two reasons: It can aggressively spread to other organs ...

Researchers discover novel mechanism linking changes in mitochondria to cancer cell death

February 20, 2018
To stop the spread of cancer, cancer cells must die. Unfortunately, many types of cancer cells seem to use innate mechanisms that block cancer cell death, therefore allowing the cancer to metastasize. While seeking to further ...

Recommended for you

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Five novel genetic changes linked to pancreatic cancer risk

February 21, 2018
In what is believed to be the largest pancreatic cancer genome-wide association study to date, researchers at the Johns Hopkins Kimmel Cancer Center and the National Cancer Institute, and collaborators from over 80 other ...

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

February 21, 2018
Recent research at Washington University School of Medicine in St. Louis demonstrated that mature cells in the stomach sometimes revert back to behaving like rapidly dividing stem cells. Now, the researchers have found that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.