Embryonic stem cells thrive when shaken

September 10, 2007
Embryonic stem cells thrive when shaken
These are embryonic stem cells grown under normal static conditions. Note that they are not uniform and clump together.

Embryos spend much of their time in the womb bobbing along with a mother’s movement, and, surprisingly enough, new research from the Georgia Institute of Technology and Emory University suggests that embryonic stem cells may develop much better under similarly shaky conditions.

Georgia Tech and Emory researchers discovered that moderate and controlled physical movement of embryonic stem cells in fluid environments, similar to shaking that occurs in the womb, improves their development and suggests that different types of movement could some day be used to control what type of cell they become. The research was published in the September issue of the journal Stem Cells.

Embryonic stem cells thrive when shaken
These are embryonic stem cells that have experienced a mild rotary motion (or shaking). Note that they are much more uniform and plentiful than stems cells grown in still conditions.

“Embryonic stem cells develop under unique conditions in the womb, and no one has ever been able to study the effect that movement has on that development process,” said Todd McDevitt, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University and head of the project. “While labs typically add all sorts of things to their cultures to influence cell direction, we were able to control the levels of differentiation and size of cell clusters by simply providing some fluid motion.”

It all started with a fortunate accident. Rich Carpenedo, a graduate student and first author of the paper, discovered by chance that a dish of embryonic stem cells left on a common lab shaker (typically used to slowly mix samples) had developed in greater numbers and more uniformly than cells grown in a static environment (i.e. unshaken).

Current popular methods of developing embryonic stem cells in the lab involve single droplets of cells separated by a great deal of space in the dish. This time - and space-consuming technique allows the cells to develop without excessive clumping (a frequent problem for stem cells developed in the lab) and for a greater number to survive in a small space.

Researchers experimented with the shaking plate and determined that they could consistently produce samples with healthier, more uniform cells just by gently sloshing the dishes of stem cells on a shaker plate. The method proved to be much simpler and more space efficient than the current standard for producing embryonic stem cells, McDevitt said.

“We can throw many cells in a dish and not have to worry about clumping and cell survival,” McDevitt said. “We call it the ‘set it and forget it’ method for growing stem cells.”

While the secret to the shaken stem cells’ success is still unclear, it’s suspected that the movement of the fluid likely increases nutrient distribution to cells, creating healthier cells, McDevitt said.

The Georgia Tech and Emory research team then began experiments to determine if the motion could be used to control the size of the cell aggregates and type of cells the embryonic cells would eventually become and found that there was a correlation between different types and speeds of movement and the phenotype and size of the stem cells.

Much work remains to be done before the movement control concept could be used to influence what types of cells embryonic stem cells eventually become. The team’s next goal is to pinpoint more precisely exactly what speeds and manners of shaking can influence stem cell phenotype.

Source: Georgia Institute of Technology

Explore further: Search for genetically stable bioengineered gut and liver tissue takes step forward

Related Stories

Search for genetically stable bioengineered gut and liver tissue takes step forward

February 8, 2018
Before medical science can bioengineer human organs in a lab for therapeutic use, two remaining hurdles are ensuring genetic stability—so the organs are free from the risk of tumor growth—and producing organ tissues of ...

Stem cell research provides hope for tasmanian devils with a deadly, transmissible cancer

February 8, 2018
Morris Animal Foundation-funded researcher Dr. Deanne Whitworth, and her colleagues at the University of Queensland, have taken the first step toward developing an effective treatment for devil facial tumor disease (DFTD), ...

Scientists create functioning kidney tissue

February 9, 2018
Scientists have successfully produced human kidney tissue within a living organism which is able to produce urine, a first for medical science.

Research uncovers gene network that regulates motor neuron formation during embryonic development

February 2, 2018
UCLA researchers have discovered the inner workings of a gene network that regulates the development of spinal motor neurons in the growing chicken and mouse embryo. The research also answers a long-standing question about ...

Stem cell divisions in the adult brain seen for the first time

February 8, 2018
Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons ...

Uncovering the early origins of Huntington's disease

January 29, 2018
With new findings, scientists may be poised to break a long impasse in research on Huntington's disease, a fatal hereditary disorder for which there is currently no treatment.

Recommended for you

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.