Genetic information makes it safer to prescribe common blood thinner

September 4, 2007

Doctors prescribing blood thinners have had to go through a lengthy trial-and-error process to arrive at the optimal dose for their patients. But now the process can be faster and safer, thanks to research conducted at Washington University School of Medicine in St. Louis.

Researchers there, along with colleagues at Saint Louis University and St. Louis College of Pharmacy, have developed an improved dosing formula for the widely prescribed anticoagulant warfarin (Coumadin?) that takes into account variations in two key genes. This approach is an important example of the trend toward personalized medicine.

With the new dosing formula, doctors can more quickly and accurately estimate the appropriate dose of warfarin, an anticoagulant that is notoriously challenging to use because so many factors affect its activity. Washington University investigator Brian F. Gage, M.D., medical director of Barnes-Jewish Hospital's Blood Thinner Clinic, and colleagues report their findings in the Sept. 1 issue of the journal Blood.

Their report follows closely upon the U.S. Food and Drug Administration's August 16, 2007 announcement of updated labeling for warfarin that includes information on the role of the two genes. At the time of the announcement, the director of the FDA's Office of Clinical Pharmacology, Larry Lesko, Ph.D., called for studies to establish proper dosing for patients with specific variations of these genes. The current study is the first to address that goal.

"We already knew these genes affected warfarin dosing, but we didn't know how to use that information clinically," says Gage, also associate professor of medicine at the School of Medicine. "But with this study, we've established a simple way to combine these genetic factors with clinical factors in a dosing algorithm."

The researchers have made the new algorithm publicly available at www.warfarindosing.org. The Web site allows physicians to input patient information and receive dosing recommendations.

Doctors prescribe warfarin to prevent blood clots or reduce the risk of stroke in patients with atrial fibrillation, artificial heart valves, deep venous thrombosis and pulmonary emboli. It is also helpful in preventing blood clot formation after certain orthopedic surgeries such as knee or hip replacements.

Until now, doctors have had to use trial and error, repeatedly changing the dose and retesting clotting time to arrive at the warfarin dose that works for each patient. During this adjustment period, which may be a matter of two to three weeks, patients are in danger of hemorrhaging when the dose is too high or blood clots and strokes when the dose is too low.

The new formula developed by Gage and colleagues calculates the proper warfarin dose using some physical and health attributes but also factors in individual variation in the two genes VKORC1 and CYP2C9. Past research showed that certain variations in these genes can affect a person's sensitivity or resistance to warfarin and how fast a person's body breaks down the drug.

The new dosing calculation better predicts each patient's response to warfarin and significantly cuts the number of dosage changes, shortening the time needed to achieve a therapeutic dose and potentially increasing patient safety.

Gage and colleagues also adapted their approach to accommodate real-world delays in gene testing, which may take two or three days to complete. Using the new method, physicians and pharmacists can use the Web tool to estimate an initial dose based on clinical factors and once the gene tests are available, revise the initial estimate to accommodate the influence of the genetic factors.

"That approach makes our method practical," Gage says. "Physicians don't have to delay initiation of therapy while they wait for genotype results."

The dosing algorithm was established in a study of patients undergoing knee or hip replacement surgery, and Gage and colleagues are now testing it on patients with other conditions to confirm its general applicability.

Citation: Millican E, Jacobsen-Lenzini PA, Milligan PE, Grosso L, Eby C, Deych E, Grice G, Clohisy JC, Barrack RL, Burnett RSJ, Voorka D, Gatchel S, Tiemeier A, Gage BF. Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood 2007 Sep 1;110(5):1511-5.

Source: Washington University in St. Louis

Explore further: Genetic testing helps set safe dose of common blood thinner

Related Stories

Genetic testing helps set safe dose of common blood thinner

September 26, 2017
Warfarin is a blood thinner that is commonly prescribed to patients to prevent life-threatening blood clots. Despite its longtime use, warfarin remains tricky to dose because a person's genetic makeup influences how the drug ...

Apixaban lowers stroke risk in atrial fibrillation patients undergoing cardioversion

August 28, 2017
Apixaban lowers the risk of stroke compared to warfarin in anticoagulation-naïve patients with atrial fibrillation scheduled for elective cardioversion, according to late-breaking results from the EMANATE trial presented ...

When two is better than three: Dual antithrombotic therapy cuts bleeding risk

August 28, 2017
Using just two anticlotting medicines for patients who have atrial fibrillation and have had a stent placed in a heart artery is safer than using the current standard treatment of three medications, according to a new study ...

Genetically guided warfarin dosing lowers risk of some adverse events

March 20, 2017
Using genetic testing to help personalize doses of warfarin therapy given to patients undergoing elective orthopedic surgery appears to lower the risk of combined adverse events compared with clinically guided dosing, according ...

Race influences warfarin dose, study says

May 29, 2015
A new report demonstrates that clinical and genetic factors affecting dose requirements for warfarin vary by race. The study, published online today in Blood, the Journal of the American Society of Hematology (ASH), proposes ...

Team finds genetic variant that could improve warfarin dosing in African-Americans

June 4, 2013
In the first genome-wide association study to focus on warfarin dose requirement in African-Americans, a multi-institutional team of researchers has identified a common genetic variation that can help physicians estimate ...

Recommended for you

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

Team eradicates hepatitis C in 10 patients following lifesaving transplants from infected donors

April 30, 2017
Ten patients at Penn Medicine have been cured of the Hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease. The findings point to new strategies for increasing ...

'bench to bedside to bench': Scientists call for closer basic-clinical collaborations

March 24, 2017
In the era of genome sequencing, it's time to update the old "bench-to-bedside" shorthand for how basic research discoveries inform clinical practice, researchers from The Jackson Laboratory (JAX), National Human Genome Research ...

The ethics of tracking athletes' biometric data

January 18, 2017
(Medical Xpress)—Whether it is a FitBit or a heart rate monitor, biometric technologies have become household devices. Professional sports leagues use some of the most technologically advanced biodata tracking systems to ...

Financial ties between researchers and drug industry linked to positive trial results

January 18, 2017
Financial ties between researchers and companies that make the drugs they are studying are independently associated with positive trial results, suggesting bias in the evidence base, concludes a study published by The BMJ ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

out7x
1 / 5 (1) Nov 30, 2007
The INR test can be done in a few minutes. This determines warfarin doses.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.