Individual differences caused by shuffled chunks of DNA in the human genome

September 27, 2007
Individual differences caused by shuffled chunks of DNA in the human genome
Snyder, Urban and Korbel (L-R) examine the distribution of structural variation on a map of the human genome.

A study by Yale researchers offers a new view of what causes the greatest genetic variability among individuals — suggesting that it is due less to single point mutations than to the presence of structural changes that cause extended segments of the human genome to be missing, rearranged, or present in extra copies.

“The focus for identifying genetic differences has traditionally been on point mutations or SNPs — changes in single bases in individual genes,” said Michael Snyder, the Cullman Professor of Molecular, Cellular & Developmental Biology and senior author of the study, which was published in Science Express. “Our study shows that a considerably greater amount of variation between individuals is due to rearrangement of big chunks of DNA.”

Although the original human genome sequencing effort was comprehensive, it left regions that were poorly analyzed. Recently, investigators found that even in healthy individuals, many regions in the genome show structural variation. This study was designed to fill in the gaps in the genome sequence and to create a technology to rapidly identify structural variations between genomes at very high resolution over extended regions.

“We were surprised to find that structural variation is much more prevalent than we thought and that most of the variants have an ancient origin. Many of the alterations we found occurred before early human populations migrated out of Africa,” said first author Jan Korbel, a postdoctoral fellow in the Department of Molecular Biophysics & Biochemistry at Yale.

To look at structural variants that were shared or different, DNA from two females — one of African descent and one of European descent — was analyzed using a novel DNA-based methodology called Paired-End Mapping (PEM). Researchers broke up the genome DNA into manageable-sized pieces about 3000 bases long; tagged and rescued the paired ends of the fragments; and then analyzed their sequence with a high-throughput, rapid-sequencing method developed by 454 Life Sciences.

“454 Sequencing can generate hundreds of thousands of long read pairs that are unique within the human genome to quickly and accurately determine genomic variations,” explained Michael Egholm, a co-author of the study and vice president of research and development at 454 Life Sciences.

“Previous work, based on point mutations estimated that there is a 0.1 percent difference between individuals, while this work points to a level of variation between two- and five-times higher,” said Snyder.

“We also found ‘hot spots’ — particular regions where there is a lot of variation,” said Korbel. “While these regions may be still actively undergoing evolution, they are often regions associated with genetic disorder and disease.”

“These results will have an impact on how people study genetic effects in disease,” said Alex Eckehart Urban, a graduate student in Snyder’s group, and one of the principal authors on the study. “It was previously assumed that ‘landmarks,’ like the SNPs mentioned earlier, were fairly evenly spread out in the genomes of different people. Now, when we are hunting for a disease gene, we have to take into account that structural variations can distort the map and differ between individual patients.”

“While it may sound like a contradiction,” says Snyder, “this study supports results we have previously reported about gene regulation as the primary cause of variation. Structural variation of large of spans of the genome will likely alter the regulation of individual genes within those sequences.”

According to the authors, even in healthy people, there are variants in which part of a gene is deleted or sequences from two genes are fused together without destroying the cellular activity with which they are associated. They say these findings show that the “parts list” of the human genome may be more variable, and possibly more flexible, than previously thought.

Source: Yale University

Explore further: How can CRISPR genome editing shape the future of cancer research?

Related Stories

How can CRISPR genome editing shape the future of cancer research?

January 12, 2018
The genome editing technology CRISPR is causing plenty of excitement in cancer research.

Researchers propose new term for the role of microbiota in neurodegeneration

December 21, 2017
Research in the past two decades has revealed that microbial organisms in the gut influence health and disease in many ways, particularly related to immune function, metabolism and resistance to infection. Recent studies ...

'Immunomap' suggests more is better when it comes to immune cell receptors and patients' response to immunotherapy

January 8, 2018
Johns Hopkins scientists have used a form of artificial intelligence to create a map that compares types of cellular receptors, the chemical "antennas" on the surface of immune system T-cells. Their experiments with lab-grown ...

Keeping egg cells fresh with epigenetics

January 1, 2018
Keeping egg cells in stasis during childhood is a key part of female fertility. New research published today in Nature Structural and Molecular Biology sheds some light on the role of epigenetics in placing egg cells into ...

Multifunctional protein contributes to blood cell development

December 21, 2017
Like an actor who excels at both comedy and drama, proteins also can play multiple roles. Uncovering these varied talents can teach researchers more about the inner workings of cells. It also can yield new discoveries about ...

DNA correction mechanism is more efficient in the most important regions of the genome

November 7, 2017
A study published by IRB Barcelona in Nature Genetics demonstrates that the error (mutation) surveillance and repair system shows greater efficiency in the protein-coding regions of genes.

Recommended for you

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.