Jefferson immunology researchers halt lethal rabies infection in brain

September 4, 2007

While rabies, an ancient scourge that still kills 70,000 every year in developing countries worldwide can be combated with a series of vaccines today, it nearly is always fatal when it reaches the brain.

But now, immunology researchers at the Kimmel Cancer Center at Jefferson have shown how a type of bat rabies infection can be prevented in mice – even after the virus reaches the brain, when it is most lethal. They found that by opening the central nervous system’s (CNS) protective blood-brain barrier, powerful infection fighting substances can swarm in, essentially driving off the invading virus. A better understanding of the process, they say, may lead to improved treatment for late-stage rabies infections in humans.

“The findings indicate that delivering immune system ‘effector cells’ – T and B cells – to the CNS can reverse an otherwise lethal rabies infection even after the virus has reached the brain,” says D. Craig Hooper, Ph.D., associate professor of cancer biology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, who led the work. “While that’s not a practical way to help infected humans, finding a method to open the blood brain barrier may be crucial to saving a person who is already showing clinical signs of rabies infection, where a vaccine is useless.” They report their work in the Journal of Virology.

In earlier work in mice, Jefferson doctoral candidate Anirban Roy found evidence suggesting that despite an immune system response, cells that are responsible for clearing the rabies virus from the CNS never cross the brain barrier. The researchers wanted to know why the barrier fails to open, and if mice were dying because the infection didn’t get cleared, then would opening the barrier result in the animals surviving.

The scientists compared silver-haired bat rabies infections in two strains of mice: PLSJL mice and 129/SvEv mice. They found that the PLSJL mice, which genetically produce less inflammatory-regulating hormone, were less likely to die from the rabies infection, possibly because they are more prone to develop a stronger inflammatory response and more likely to have opened brain barriers. Conversely, they also found that despite a strong immune response, the rabies-infected 129/SvEv mice died and were less likely to have open barriers.

When they gave the PLSJL mice the anti-inflammatory steroid hormone DHEA, the brain inflammation decreased, the barrier’s permeability lessened, and the death rate more than doubled.

The researchers thought that if some rabies-infected PLSJL mice died because the virus overwhelms the immune system T and B cells already in the brain and CNS, then opening the barrier even more would enable more immune cells to reach CNS tissue and fight the virus. They subsequently gave animals experimental autoimmune encephalitis (EAE), which causes an inflammatory response and the barrier to open. As a result, a higher percentage of animals survived the infection.

“In the future, one of the things we want to do is tone down the inflammatory response caused by EAE and minimize the pathogenesis, yet deliver immune cells to the CNS,” says Dr. Hooper, who is also associate director of Jefferson’s Center for Neurovirology. “The trick to survival might be to open the barrier and deliver effectors to the CNS.

“The data suggest that the CNS cells are developing T and B cells effectively, but that delivery to the CNS is impaired,” Dr. Hooper explains. “It might mean that the communication between the CNS and the immune system is somehow blocked. Perhaps when the disease gets further along, it triggers certain hormones that prevent the brain barrier from opening in response to immune signals. We’re trying to develop a better way to open the barrier and let these immune cells in.”

While they would like to try to understand the mechanism of the blockage, he notes, the work has larger implications. “Such studies should tell us a lot about more fundamental problems. Barrier integrity is important in Alzheimer’s, Parkinson’s, MS, and delivering immune factors in brain cancer.”

Source: Thomas Jefferson University

Explore further: New rabies virus discovered in Tanzania

Related Stories

New rabies virus discovered in Tanzania

March 12, 2012
(Medical Xpress) -- A new type of rabies virus has been discovered in Tanzania by scientists from the University of Glasgow and the Animal Health and Veterinary Laboratories Agency (AHVLA).

New viral tools for mapping brains

October 31, 2014
(Medical Xpress)—A brain-computer-interphase that is optogenetically-enabled is one of the most fantastic technologies we might envision today. It is likely that its full power could only be realized under the guidance ...

Recommended for you

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

Strain of intestinal bacteria can stop high-salt diet from inducing inflammatory response linked to hypertension

November 15, 2017
Microbes living in your gut may help protect against the effects of a high-salt diet, according to a new study from MIT.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.