Scientists discover how cancer may take hold

September 25, 2007

A team, led by researchers at the Carnegie Institution, has found a key biochemical cycle that suppresses the immune response, thereby allowing cancer cells to multiply unabated. The research shows how the biomolecules responsible for healthy T-cells, the body’s first defenders against hostile invaders, are quashed, permitting the invading cancer to spread. The same cycle could also be involved in autoimmune diseases such as multiple sclerosis. The work is published in the September 25, 2007, issue of PLoS Biology.

The scientists used special molecular “nanosensors” for the work. “We used a technique called fluorescence resonance energy transfer, or FRET, to monitor the levels of, tryptophan, one of the essential amino acids human cells need for viability,” explained lead author Thijs Kaper. “Humans get tryptophan from foods such as grains, legumes, fruits, and meat. Tryptophan is essential for normal growth and development in children and nitrogen balance in adults. T-cells also depend on it for their immune response after invading cells have been recognized. If they don’t get enough tryptophan, the T-cells die and the invaders remain undetected.”

The scientists looked at the chemical transformations that tryptophan undergoes as it is processed in live human cancer cells. When tryptophan is broken down in the cancer cells, an enzyme (dubbed IDO) forms molecules called kynurenines. This reduces the concentration of tryptophan in the local tissues and starves T-cells for tryptophan. A key finding of the research was that a transporter protein (LAT1), present in certain types of cancer cells, exchanges tryptophan from the outside of the cell with kynurenine inside the cell, resulting in an excess of kynurenine in the body fluids, which is toxic to T-cells.

“It’s double trouble for T-cells,” remarked Wolf Frommer. “Not only do they starve from lack of tryptophan in their surroundings, but it is replaced by the toxic kynurenines, which wipes T-cells out.”

The scientists think that this cycle may be also be involved in cells involved in certain autoimmune diseases. In these cases the cells may not be able to take up or convert enough tryptophan. Without enough of the amino acid or the IDO enzyme to convert tryptophan, the cells cannot produce enough kynurenine. Lacking kynurenine, the body’s own T-cells cannot be kept in check, so they rebel and attack the body.

The FRET system detects metabolites such as sugars and amino acids using a biosensor tag. A protein is genetically fused to tags at opposite ends of a molecule. The tags are made from different colors of the jellyfish green fluorescent protein (GFP). When a metabolite binds to the biosensor, it changes the shape of the sensor’s backbone, altering the position of the fluorescent tags. When a specific wavelength of light activates one tag, it fluoresces. When the metabolite causes the tags to move close together, the other tag will also fluoresce—resonating like a tuning fork. This system allows the scientists to visually track the location and concentration of certain biochemicals.

“Our FRET technology with the novel tryptophan nanosensor has an added bonus,” said Thijs. “It can be used to identify new drugs that could reduce the ability of cancer cells to uptake tryptophan or their ability to degrade it. We believe that this technology could be a huge boost to cancer treatment.”

Source: Carnegie Institution

Explore further: High levels of natural immune suppressor correlate with poor survival in the most common leukemia

Related Stories

High levels of natural immune suppressor correlate with poor survival in the most common leukemia

November 27, 2017
Patients diagnosed with the most common form of leukemia who also have high levels of an enzyme known to suppress the immune system are most likely to die early, researchers say.

Activation of immune T cells leads to behavioral changes

October 23, 2017
Scientists from the RIKEN Center for Integrative Medical Sciences in Japan and collaborators have found that T cells—immune cells that help to protect the body from infections and cancer—change the body's metabolism when ...

How the tilt of a cell-surface receptor prevents cancer

January 31, 2013
Clear communication between cells is essential to every aspect of the body's internal function. But since cells can't talk, or send emails, how do they communicate?

Pathway that degrades holiday turkey fuels metastasis of triple negative breast cancer

December 10, 2014
A University of Colorado Cancer Center study being presented at the San Antonio Breast Cancer Symposium shows that triple negative breast cancer cells process tryptophan to promote survival while traveling through the body ...

Brain cancer: Two essential amino acids might hold key to better outcomes

March 31, 2016
The altered metabolism of two essential amino acids helps drive the development of the most common and lethal form of brain cancer, according to a new study led by researchers at The Ohio State University Comprehensive Cancer ...

Of enzymes and aging: Tryptophan metabolism plays key role in aging and age-related neurological diseases

October 5, 2012
(Medical Xpress)—In the battle against aging and age-related neurological diseases such as Parkinson's and Alzheimer's, a key factor has long appeared to be the toxicity of proteins which tend to aggregate. Recently, scientists ...

Recommended for you

Drug suppresses spread of breast cancer caused by stem-like cells

December 12, 2017
Rare stem-like tumor cells play a critical role in the spread of breast cancer, but a vulnerability in the pathway that powers them offers a strategy to target these cells using existing drugs before metastatic disease occurs, ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

A new weapon against bone metastasis? Team develops antibody to fight cancer

December 11, 2017
In the ongoing battle between cancer and modern medicine, some therapeutic agents, while effective, can bring undesirable or even dangerous side effects. "Chemo saves lives and improves survival, but it could work much better ...

Insights on how SHARPIN promotes cancer progression

December 11, 2017
Researchers at Sanford Burnham Prebys Medical Discovery (SBP) and the Technion in Israel have found a new role for the SHARPIN protein. In addition to being one of three proteins in the linear ubiquitin chain assembly complex ...

Glioblastoma survival mechanism reveals new therapeutic target

December 11, 2017
A Northwestern Medicine study, published in the journal Cancer Cell, has provided new insights into a mechanism of tumor survival in glioblastoma and demonstrated that inhibiting the process could enhance the effects of radiation ...

Liver cancer: Lipid synthesis promotes tumor formation

December 11, 2017
Lipids comprise an optimal energy source and an important cell component. Researchers from the Biozentrum of the University of Basel and from the University of Geneva have now discovered that the protein mTOR stimulates the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.