Ability to handle stress, depression linked to variations in brain structure and function

October 18, 2007

Researchers at UT Southwestern Medical Center have found in mice that the ability or inability to cope with stress is linked to specific differences in the way brain cells communicate with each other.

Understanding these mechanisms – which are also present in people – may aid scientists in developing methods for humans to boost resilience to stress and depression.

"One of the major insights provided by this work is that resilience to stress is an active process," said Dr. Eric Nestler, chairman of psychiatry and senior author of the study, which appears in the Oct. 19 issue of Cell.

“This means that chronic stress, depression, post-traumatic stress disorder and similar disorders might be treated by promoting the mechanisms that underlie resilience,” said Dr. Nestler.

Mice, like humans, vary widely in their reactions to stress. Some adapt well, while others become timid and appear depressed. While stress is known to play a major role in human mental illness, scientists wonder why some people can cope well with adversity while others do not.

The researchers used male mice that had been inbred to the point that they were genetically identical. They stressed the rodents by placing them in the territory of a larger, aggressive mouse and recorded how this stress affected their ability to interact socially. In a previous study, Dr. Nestler and his colleagues established that mice which repeatedly go through this “social defeat” are a good model for human depression.

In the current study, some of the genetically identical mice interacted with the unfamiliar, more aggressive mouse, while others avoided it and showed submissive behavior.

The researchers classified the mice according to whether they had coped with the stress or not. They found that some showed a long-lasting social withdrawal, while others continued to interact normally with other mice.

The mice that coped less effectively were also less attracted to sugar but more to cocaine than the coping mice, suggesting that there was a link between their vulnerability to stress and substance abuse.

The researchers then examined two areas of the brain that are associated with pleasure and reward, called the ventral tegmental area (VTA) and the nucleus accumbens (NAc).

Neurons in the VTA send chemical signals to the NAc, and the present study shows that in mice experiencing social defeat and depression, these neurons fire faster. Upon firing, the neurons cause the release of a substance called BDNF, a nerve growth factor that the researchers have previously linked to poor coping.

The researchers further found that the vulnerable mice showed an increase in BDNF in the nucleus accumbens. The resilient ones did not, presumably because neurons from their VTAs did not fire as much. When the researchers genetically blocked BDNF in the more timid mice, they became resistant to stress.

“Preventing BDNF signaling to the nucleus accumbens may be a key mechanism of resistance to stress and depression,” Dr. Nestler said.

The researchers also found that better-coping mice had far more genes turned on and off in the VTA and NAc than vulnerable mice. This discovery suggests that successful coping with stress is an active process that involves the regulation of many genes, not just the lack of responses seen in poorly coping animals.

Three of the genes that showed the greatest difference between the two groups of mice coded for potassium channels, molecules that let potassium pass through a nerve cell’s membrane when it fires. The researchers found that the resilient animals had increased activity of the potassium channels, which counters the increased nerve firing, and hence the increase of BDNF release, in the vulnerable mice.

To explore how these results might apply to humans, the researchers obtained brain samples from depressed and non-depressed humans. The depressed people showed a 40 percent increase in BDNF levels in the nucleus accumbens, compared to controls.

From these various findings, the researchers concluded that preventing BDNF release into the nucleus accumbens may be a way to increase coping ability to stress or depression.

“It may be possible to develop compounds that improve one’s ability to cope with stress,” Dr. Nestler said. “But blocking BDNF might also affect other systems, so we must find a way to focus on this single pathway.”

Vaishnav Krishnan, an M.D./Ph.D. student in the Medical Scientist Training Program and lead author of the paper, said, “The study yields significant insights into molecular mechanisms that may underlie individual differences of people in reacting to stressful life events.”

Source: UT Southwestern Medical Center

Explore further: Study suggests well-known growth suppressor actually fuels lethal brain cancers

Related Stories

Study suggests well-known growth suppressor actually fuels lethal brain cancers

June 18, 2018
Scientists report finding a potentially promising treatment target for aggressive and deadly high-grade brain cancers like glioblastoma. But they also say the current lack of a drug that hits the molecular target keeps it ...

Scientists learn more about how gene linked to autism affects brain

June 18, 2018
New preclinical research shows a gene already linked to a subset of people with autism spectrum disorder is critical to healthy neuronal connections in the developing brain, and its loss can harm those connections to help ...

From designer microbes to stem cells, researchers are investigating new strategies to treat bowel disease

June 12, 2018
The University of Toronto's David McMillen and his research team are creating a new life form to ward off disease – a bespoke, gut-dwelling microbe engineered to release drugs when needed.

The neurons that rewrite traumatic memories

June 14, 2018
Memories of traumatic experiences can lead to mental health issues such as post-traumatic stress disorder (PTSD), which can destroy a person's life. It is currently estimated that almost a third of all people will suffer ...

New discovery about the brain's water system may prove beneficial in stroke

June 15, 2018
Water is transported from the blood into the brain via an ion transporter, according to a new study on mice conducted at the University of Copenhagen. If the mechanism can be targeted with medicine, it may prove relevant ...

Reversible changes to neural proteins may explain sleep need

June 13, 2018
Long periods of waking can lead to cognitive impairment, and the need to sleep continues to build up. Sleep then refreshes the brain through alterations in molecular biochemistry. These changes impact neuronal plasticity ...

Recommended for you

Research reveals zero proof probiotics can ease your anxiety

June 20, 2018
If you're expecting probiotics to reduce your anxiety, it might be time to put down that yogurt spoon—or supplement bottle—and call a professional instead.

Compound made inside human body stops viruses from replicating

June 20, 2018
The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Simple sugar delays neurodegeneration caused by enzyme deficiency

June 20, 2018
A new therapeutic approach may one day delay neurodegeneration typical of a disease called mucopolysaccharidoses IIIB (MPS IIIB). Neurodegeneration in this condition results from the abnormal accumulation of essential cellular ...

Long-term estrogen therapy changes microbial activity in the gut, study finds

June 20, 2018
Long-term therapy with estrogen and bazedoxifene alters the microbial composition and activity in the gut, affecting how estrogen is metabolized, a new study in mice found.

Researchers use AI to improve mammogram interpretation

June 20, 2018
In an effort to reduce errors in the analyses of diagnostic images by health professionals, a team of researchers from the Department of Energy's Oak Ridge National Laboratory has improved understanding of the cognitive processes ...

Everything big data claims to know about you could be wrong

June 19, 2018
When it comes to understanding what makes people tick—and get sick—medical science has long assumed that the bigger the sample of human subjects, the better. But new research led by UC Berkeley suggests this big-data ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.