Botched production of insulin molecule may lead to diabetes

October 1, 2007

Picture a pretzel factory production line, with conveyer belts carrying the dough, formed into unbaked pretzels, down to the oven to be cooked.

Now imagine what would happen if pretzel dough started to overflow the mixer and oozed as a blob onto the conveyor, misshapen, and sticking fast to the dough of the other fully formed, unbaked pretzels. The result: a mess. And if that mess could no longer be conveyed into the oven, the backup of messy dough in the system would get worse and worse, and might eventually shut down the whole factory.

That’s essentially what might be happening in a much smaller kind of factory: the cells that make insulin in the body of people with diabetes.

According to new findings by a team from the University of Michigan Medical School, those tiny factories may shut down because of glitches in the production of a molecule called proinsulin — the precursor, or “dough”, out of which insulin is made.

The insulin factories are called beta cells, and they normally churn out large quantities of insulin within the pancreas. This insulin supply can be released into the bloodstream as needed, to help the body turn sugars from food into energy for cells.

But in people with diabetes, the beta cell factories don’t keep up with the demand for insulin, and sugar builds up in the blood, wreaking havoc on nerves, blood vessel walls and kidneys. And just like a factory that can’t fill a growing number of orders for a hot product, the situation just keeps getting worse and the diabetes progresses.

Scientists have been working to understand why insulin production falters in people with diabetes, and the U-M team has focused on the production and folding of the proinsulin molecule deep within the beta cell. Using a tag that can make proinsulin glow green, they have now found a way to watch proinsulin being made within animal cells, and folded into a shape that can then be turned into insulin. Of course, this also allows them to study what happens when that process goes awry.

In the new paper, published online before print publication in the Proceedings of the National Academy of Sciences, the team details its findings and proposes that proinsulin 'blobs' might lead to beta cell dysfunction and death, which in turn can lead to the start, or progression, of diabetes.

Senior author Peter Arvan, M.D., Ph.D., says, "We believe that in the insulin production factory, misfolded copies of newly-made proinsulin can gum up the works in several ways. This paper shows that one of the first things that can happen is that misfolded proinsulin can stick to other proinsulin in the very first stages of production within the endoplasmic reticulum,” the area of the cell where proteins are made.

Arvan, who is chief of Metabolism, Endocrinology and Diabetes at the U-M Medical School and director of the Michigan Comprehensive Diabetes Center, explains that this chain reaction can start with just a few misfolded proinsulin molecules. It can then lead to beta cell shutdown and an insulin shortage. “The misfolded proinsulin does not get exported from the factory, and neither does the normally folded proinsulin made after it,” he says. “Pretty soon, pancreatic beta cells are running out of insulin to secrete in response to the customer's demand for the product – that is, an increase in blood glucose.” And that is a key hallmark of diabetes.

Arvan, who is the William and Delores Brehm Professor of Type 1 Diabetes Research, and first author Ming Liu, M.D., Ph.D., led the research team in developing the techniques needed to visualize proinsulin production and then study problems with the process by following misfolded molecules through the production pathway.

First, the team engineered the gene for human proinsulin to insert a tag that makes the protein fluorescent, but does not interfere with the production, function or secretion of insulin. They inserted the human gene into rat pancreas cells, which allows them to see the human proinsulin being made in live rat cells under the microscope.

Next, the team introduced a mutation into the tagged human insulin gene that causes the proinsulin molecule to fold incorrectly. This allowed them to see what happened when the misfolded human proinsulin and the normal rat proinsulin were produced together inside the same cell.

What they saw was misfolded fluorescent proinsulin getting stuck in the endoplasmic reticulum, so it could not move along normal ‘conveyor belt’ to make insulin. Simultaneously, this blocked the traffic of the normal proinsulin in the same cells. This ‘protein mess’ in the endoplasmic reticulum directly inhibits insulin production in the beta cells, even including insulin production that comes from the otherwise normal rat proinsulin. The beta cells begin to suffer from this, and they ultimately die.

The Arvan lab is also collaborating with other groups to identify new mutations in the proinsulin gene of people with congenital diabetes, and to understand how these mutations may cause a similar “protein mess.”

These mutations are apparently the second most common genetic cause of congenital diabetes, which is a relatively rare genetic illness. Congenital diabetes differs from Type 1 diabetes because congenital diabetes is not caused by an attack by the immune system on the body’s own beta cells, and because it is passed down from parent to child. Arvan and his team suspect that congenital diabetes in babies mirrors the proinsulin misfolding seen in their new study, and in a strain of mice known as Akita mice, which develop diabetes spontaneously after birth.

“The big question -- still to be determined -- is how much of the more common forms of diabetes also involve proinsulin misfolding in beta cells that are stressed to the max to make all the insulin they can,” Arvan notes. “This is a question that we are actively pursuing.”

Source: University of Michigan Health System

Explore further: Researching proinsulin misfolding to understand diabetes

Related Stories

Researching proinsulin misfolding to understand diabetes

November 16, 2016
According to the World Health Organization, 422 million adults across the globe have diabetes. In fact, the number of adults with the disease continues to grow each year.

DNA 'reverse' vaccine reduces levels of immune cells believed responsible for Type 1 diabetes

June 26, 2013
A clinical trial of a vaccine, led by Stanford University School of Medicine researchers and designed to combat type-1 diabetes, has delivered initially promising results, suggesting that it may selectively counter the errant ...

New map of insulin pathway could lead to better diabetes drugs

September 30, 2013
A team led by scientists at The Scripps Research Institute (TSRI) has created the first comprehensive roadmap of the protein interactions that enable cells in the pancreas to produce, store and secrete the hormone insulin. ...

Researchers find noninvasive way to view insulin in pancreas

February 24, 2016
A new study in the journal Diabetes by Arvan and his fellow U-M researchers finally allowed them to see exactly how much insulin was present in the pancreas of a living animal.

Sequential empagliflozin, linagliptin diabetes Tx effective

January 4, 2017
(HealthDay)—After metformin failure, sequential treatment escalation with empagliflozin and linagliptin is an effective diabetes treatment option due to additive effects on postprandial glucose control, according to a study ...

Imeglimin beneficial as add-on to metformin in T2DM

December 14, 2012
(HealthDay)—For patients with type 2 diabetes inadequately controlled by metformin alone, addition of the new oral anti-diabetes agent imeglimin improves glycemic control with good tolerability and safety, according to ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.