Scientists identify brain circuits used in sensation of touch

October 10, 2007

The ability to tactually recognize fine spatial details, such as the raised dots used in braille, is especially important to those who are blind. With that in mind, a team of researchers has identified the neural circuitry that facilitates spatial discrimination through touch. Understanding this circuitry may lead to the creation of sensory-substitution devices, such as tactile maps for the visually impaired.

The findings appear in the Oct. 10 edition of The Journal of Neuroscience.

The research team, led by Krish Sathian, MD, PhD, professor of neurology in Emory University School of Medicine, included first author Randall Stilla, research MRI technologist at Emory, and Gopikrishna Deshpande, Stephen Laconte and Xiaoping Hu of the Coulter Department of Biomedical Engineering at Georgia Tech and Emory.

Using functional magnetic resonance imaging (fMRI), the researchers found heightened neural activity in a network of frontoparietal regions of the brain when people engaged in fine tactile spatial discrimination. Within this network, the levels of activity in two subregions of the right posteromedial parietal cortex--the right posterior intraparietal sulcus (pIPS) and the right precuneus--were predictive of individual participants' tactile sensitivities.

To determine which areas of the brain were involved in identifying fine spatial details, the researchers asked 22 volunteers to determine only by touch whether the central dot of three vertically arranged dots was offset to the left or to the right of the other two.

"Using their right index fingers, the subjects got to feel the dots for one second to determine in which direction the central dot was offset," says Dr. Sathian. "We also varied the amount the dot was offset from the other two, which allowed us to quantify people's sensitivity. In other words, we asked what is the minimal offset required to discriminate."

In a separate control task, the subjects were asked to determine how long they were touched by three perfectly aligned dots. Brain activity during that temporal task was contrasted with brain activity during the spatial task. The researchers found that different brain regions showed more activity during either spatial or temporal processing.

"What is interesting is that we found the most relevant areas of the brain for spatial processing are on the right side, the same side of the body that was used to feel the stimuli. This is the opposite side to the one that might be expected," says Randall Stilla.

"We usually think of the left side of the brain as controlling the right side of the body, which is generally true. But more and more we are finding that the right side of the brain is particularly important in many types of sensory processing," adds Dr. Sathian.

Dr. Sathian's and Dr. Hu's laboratories also collaborated to determine the strength and direction of the connections between the areas of the brain that govern tactile spatial acuity (perception). Such collaboration, explains Dr. Hu, allows the application of cutting-edge image analysis methods to fundamental questions in neuroscience.

"We found that there are two pathways into the right posteromedial cortex that not only predict individuals' acuity but also predict the magnitude of neural activation," says Dr. Deshpande, who performed the connectivity analyses. "In better performers, the paths predicting acuity converge from the left somatosensory cortex and right frontal eye field (an attentional control center), onto the right pIPS. What's more, these paths are stronger during spatial discrimination than temporal discrimination."

The researchers are not yet sure why this particular neural pathway exists. Dr. Sathian suggests the signal patterns may be a combination of attentional, tactile, and visual processing reflecting the visualization of the spatial configurations. Future research, he says, will attempt to unravel the mechanisms underlying these different component processes.

Source: Emory University

Explore further: Highly precise wiring in the cerebral cortex

Related Stories

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Sex and aggression controlled separately in female animal brains, but overlap in male brains

September 18, 2017
Brain structures that control sexual and aggressive behavior in mice are wired differently in females than in males. This the finding of a study led by scientists at NYU School of Medicine and published online Sept. 18 in ...

Researchers learn more about maximizing brain use

September 19, 2017
Neuroscientists from Higher School of Economics and Charité University Clinic in Berlin have come up with a new multivariate method for predicting behavioural response to a stimulus using information about the phase of preceding ...

Explaining bursts of activity in brains of preterm babies

September 12, 2017
The source of spontaneous, high-amplitude bursts of activity seen in the brains of preterm babies, which are vital for healthy development, has been identified by a team led by researchers at UCL and King's College London.

Schizophrenia and memory deficits: Solving the mystery behind a most stubborn symptom

September 4, 2017
A team of Columbia scientists has found that disruptions to the brain's center for spatial navigation—its internal GPS—result in some of the severe memory deficits seen in schizophrenia. The new study in mouse models ...

Scientists launch virtual reality game to detect Alzheimer's

August 29, 2017
Sea Quest Hero is more than just the usual computer game in which players find their way through mazes, shoot and chase creatures—it also doubles as scientists' latest tool for studying Alzheimer's disease.

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.