Sidestepping cancer's chaperone

October 18, 2007

Cancerous tumors are wildly unfavorable environments. Struggling for oxygen and nutrients while being bombarded by the body’s defense systems, tumor cells in fact require sophisticated adaptations to survive and grow. For decades, scientists have sought ways to circumvent these adaptations to destroy cancer. Now, researchers at the University of Massachusetts Medical School (UMMS), have defined a method to target and kill cancer’s “chaperone”—a protein that promotes tumor cell stability and survival—without damaging healthy cells nearby.

In “Regulation of Tumor Cell Mitochondrial Homeostasis by an Organelle-Specific Hsp90 Chaperone Network,” published in the October 19 issue of Cell, Dario C. Altieri, MD, the Eleanor Eustis Farrington Chair in Cancer Research and professor and chair of cancer biology, and colleagues at UMMS, identify a new pathway by which cancer cells grow and survive—and provide a clear blueprint for the design and production of a novel class of anticancer agents aimed squarely at that pathway.

While previous research has demonstrated that a class of proteins known as molecular chaperones promote tumor cell survival, the specific way in which the proteins achieve this has not been well understood. And although inhibitors of a specific chaperone known as heat shock protein 90 (Hsp90) have been studied for the treatment of cancer, progress has been questionable. In this current research, Dr. Altieri and colleagues sought to both define the mechanism by which Hsp90 leads to tumor cell stability and survival, and understand why general suppression of Hsp90 has not been as successful in clinical trials.

Notably, they found a very abundant pool of Hsp90 (and its related molecule TRAP-1) in the mitochondria of tumor cells. Mitochondria are organelles that produce a cell’s energy, but also play a key role in cell death. Indeed, many current drugs and treatments work by damaging the mitochondria. Data obtained by Altieri and colleagues indicate that Hsp90 and TRAP-1 protect mitochondria in tumor cells from fulfilling their role in cell death. Significantly, the increased levels of Hsp90 and TRAP-1 were found only in the mitochondria of tumor cells—not in those of normal cells.

“We have identified this mitochondrial accumulation of Hsp90 and TRAP-1 as a critical adaptive mechanism that makes cancer cells less susceptible to the unfavorable environment of tumors, and to various anticancer agents,” Altieri explained.

This new understanding of the sub-cellular location of Hsp90 and TRAP-1 in the mitochondria also answers the question as to why the current Hsp90 inhibitors—which do not penetrate the mitochondria—are not as effective as hoped in the clinic. In this study, Altieri and colleagues synthesized a new compound, modifying an existing Hsp90 inhibitor so that it was able to reach the mitochondria. When the inhibitors were able to penetrate the mitochondria, they were able to eliminate the protective function of Hsp90, and induce massive tumor cell death. Notably, because this accumulation of Hsp90 and TRAP-1 only occurs in tumor cells, drugs conceived to target Hsp90 would largely spare normal cells, minimizing or even nullifying the dramatic side effects that plague many current cancer treatments.

“This is an important discovery that opens the door to the design of a completely new class of anticancer agents,” Altieri explained. “It really turns the tables on a field that has been explored with only partial success. We can now take a class of drugs and make them better and more efficacious by engineering them to accumulate in the mitochondria.”

Source: University of Massachusetts Medical School

Explore further: Breast cancer clinical trial tests combo of heat shock protein inhibitor and hormonal therapy

Related Stories

Breast cancer clinical trial tests combo of heat shock protein inhibitor and hormonal therapy

May 22, 2012
Pushed to the brink of survival, the hyper-driven cells of a cancerous tumor tap into an ancient system that has helped organisms cope with internal stresses and environmental challenges since life began. As an integral part ...

Tumor-targeting compound points the way to new personalized cancer treatments

December 1, 2011
One major obstacle in the fight against cancer is that anticancer drugs often affect normal cells in addition to tumor cells, resulting in significant side effects. Yet research into development of less harmful treatments ...

Heat-shock protein enables tumor evolution and drug resistance in breast cancer

December 8, 2014
Long known for its ability to help organisms successfully adapt to environmentally stressful conditions, the highly conserved molecular chaperone heat-shock protein 90 (HSP90) also enables estrogen receptor-positive (ER+) ...

New type of cancer treatment targets cancer cell proteins

November 6, 2015
A new therapeutic approach that targets an aggressive form of lymphoma may greatly increase the efficacy of treatment and result in better outcomes for patients, according to new research by scientists at Weill Cornell Medicine.

Scientists identify aggressive pancreatic cancer cells and their vulnerability

February 9, 2017
Researchers have identified a gatekeeper protein that prevents pancreatic cancer cells from transitioning into a particularly aggressive cell type and also found therapies capable of thwarting those cells when the gatekeeper ...

Researchers find potential solution to melanoma's resistance to vemurafenib

February 28, 2012
Researchers at Moffitt Cancer Center in Tampa, Fla., and colleagues in California have found that the XL888 inhibitor can prevent resistance to the chemotherapy drug vemurafenib, commonly used for treating patients with melanoma.

Recommended for you

Drug yields high response rates for lung cancer patients with harsh mutation

October 18, 2017
A targeted therapy resurrected by the Moon Shots Program at The University of Texas MD Anderson Cancer Center has produced unprecedented response rates among patients with metastatic non-small cell lung cancer that carries ...

Possible new immune therapy target in lung cancer

October 18, 2017
A study from Bern University Hospital in collaboration with the University of Bern shows that so-called perivascular-like cells from lung tumors behave abnormally. They not only inadequately support vascular structures, but ...

Many pelvic tumors in women may have common origin—fallopian tubes

October 17, 2017
Most—and possibly all—ovarian cancers start, not in ovaries, but instead in the fallopian tubes attached to them.

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

New bowel cancer drug target discovered

October 17, 2017
Researchers at the Francis Crick Institute have discovered a new drug target for bowel cancer that is specific to tumour cells and therefore less toxic than conventional therapies.

Using artificial intelligence to improve early breast cancer detection

October 17, 2017
Every year 40,000 women die from breast cancer in the U.S. alone. When cancers are found early, they can often be cured. Mammograms are the best test available, but they're still imperfect and often result in false positive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.