Adult brain cells are movers and shakers

November 8, 2007
Adult brain cells are movers and shakers
Left: An image of the cerebellum showing labeled main trunk axons (green) and their target neurons (red), with which they form synapses. This image was not made from a living animal, but rather from a thin slice of fixed brain tissue. Right: Exemplar time-lapse images of axon in the intact brain of a living, anesthetized adult mouse. Both the degree of magnification and the orientation of the axon are different from the ones shown in the left picture. The main axon trunk was stable but a few side-branches showed elongation over a period of several hours (yellow arrowheads). Credit: Johns Hopkins Medicine

It’s a general belief that the circuitry of young brains has robust flexibility but eventually gets “hard-wired” in adulthood. As Johns Hopkins researchers and their colleagues report in the Nov. 8 issue of Neuron, however, adult neurons aren’t quite as rigidly glued in place as we suspect.

The investigators, led by David Linden, Ph.D., professor of neuroscience, took advantage of a new technique known as two-photon microscopy that let them literally see living neurons going about their business in the intact brain. The researchers injected fluorescent dye into the brains of mice to light up a subset of neurons and then viewed these neurons through a window constructed in the skull of living, anesthetized mice.

They examined neurons that extend fibers (called axons) to send signals to a brain region called the cerebellum, which helps coordinate movements and sensory information. Like a growing tree, these axons have a primary trunk that runs upward and several smaller branches that sprout out to the sides.

But while the main trunk was firmly connected to other target neurons in the cerebellum, stationary as adult axons are generally thought to be, “the side branches swayed like kite tails in the wind,” says Linden. Over the course of a few hours, individual side branches would elongate, retract and morph in a highly dynamic fashion. These side branches also failed to make conventional connections, or synapses, with adjacent neurons. Furthermore, when a drug was given that produced strong electrical currents in the axons, the motion of the side branches stalled.

Why the brain would want such motile, non-connected branches is the next mystery to tackle. Linden thinks they may present a second mechanism for conveying information beyond traditional synapses or assist in nerve regeneration, quickly forming synapses should nearby nerves get damaged. “The ability to make time-lapse movies of axons in the living brain gives us a powerful tool to explore axon regeneration that underlies neural recovery following stroke or other brain trauma,” Linden says.

Source: Johns Hopkins Medical Institutions

Explore further: Newly discovered long noncoding RNA plays critical role in brain growth and signaling

Related Stories

Newly discovered long noncoding RNA plays critical role in brain growth and signaling

October 9, 2018
A new study from the Scripps Research laboratory of Sathyanarayanan Puthanveettil, Ph.D., peers deep within the nucleus of developing brain cells and finds that long noncoding RNAs play an important role in the healthy functioning ...

Gut branches of vagus nerve essential components of brain's reward and motivation system

September 20, 2018
A novel gut-to-brain neural circuit establishes the vagus nerve as an essential component of the brain system that regulates reward and motivation, according to research conducted at the Icahn School of Medicine at Mount ...

What your cell phone camera tells you about your brain

September 19, 2018
Driving down a dark country road at night, you see a shape ahead on the roadside. Is it a deer or a mailbox? Your brain is structured to make the best possible decision given its limited resources, according to new research ...

Could the zika virus fight the brain cancer that killed john McCain?

September 18, 2018
(HealthDay)—Preliminary research in mice suggests that the Zika virus might be turned from foe into friend—enlisted to curb deadly glioblastoma brain tumors.

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Antidepressant restores youthful flexibility to aging inhibitory neurons in mice

August 20, 2018
A new study provides fresh evidence that the decline in the capacity of brain cells to change, called "plasticity," rather than a decline in total cell number may underlie some of the sensory and cognitive declines associated ...

Recommended for you

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Researchers create a functional salivary gland organoid

October 11, 2018
A research group led by scientists from Showa University and the RIKEN Center for Biosystems Dynamics Research in Japan have, for the first time, succeeded in growing three-dimensional salivary gland tissue that, when implanted ...

Lassa fever vaccine shows promise and reveals new test for immunity

October 11, 2018
Lassa fever belongs to the same class of hemorrhagic fevers as Ebola. Like Ebola, it has been a major health threat in Western Africa, infecting 100,000-300,000 people and killing 5,000 per year. A new vaccine against both ...

Genetically engineered 3-D human muscle transplant in a murine model

October 10, 2018
A growing need for tissues and organs in surgical reconstruction is addressed by the promising field of tissue engineering. For instance, muscle atrophy results from severe traumatic events including deep burns and cancer, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.