Cough medicine fights dyskinesias in Parkinson's

November 7, 2007

A cough suppressant and a drug tested as a schizophrenia therapy curb the involuntary movements that are disabling side effects of taking the Parkinson's disease medication levodopa, Portland scientists have found.

Dextromethorphan, used in such cold and flu medications as Robitussin, Sucrets, Triaminic and Vicks, suppresses dyskinesias in rats, researchers at Oregon Health & Science University and the Portland Veterans Affairs Medical Center found. Dyskinesias are the spastic or repetitive motions that result from taking levodopa, or L-dopa, over long periods.

The researchers also found that BMY-14802, a drug previously tested in people with schizophrenia and found to be safe – although not effective in treating schizophrenia symptoms – suppressed dyskinesias in rats more effectively than dextromethorphan did, suggesting that BMY-14802 might work to block dyskinesias in people with Parkinson's.

"These results were unexpected, but very exciting," said the study's lead author, Melanie A. Paquette, Ph.D., postdoctoral fellow in the Department of Behavioral Neuroscience, OHSU School of Medicine, and the PVAMC. "We have filed a patent for the use of BMY-14802 for dyskinesias and we hope to get funding to begin human trials very soon."

The study, titled "Differential effects of NMDA antagonists and sigma ligands on L-dopa-induced behavior in the hemiparkinson rat," is being presented during a poster session today at Neuroscience 2007, the 37th annual Society for Neuroscience conference in San Diego.

The results also affirm the value of the rat model for dyskinesias that Paquette's team used in the study. Previous studies by other researchers have shown the drug amantadine already is effective in treating dyskinesias in both humans and rats, and dextromethorphan's effectiveness against the condition in rats provides more data supporting the use of the model.

"Basically, these two drugs work to block dyskinesias in both humans and rats, and that means the rats are a good model to screen potential drug treatments for humans with dyskinesias," Paquette said.

But BMY-14802, which is an antagonist at sigma-1 receptor sites in the brain, "worked much better than dextromethorphan," an antagonist at N-methyl-D-aspartate (NMDA) receptors.

"There's something special about BMY-14802," Paquette explained. "The effect on dyskinesias is really striking and I've repeated it several times, so it's a reliable finding. It's a very exciting result."

Source: Oregon Health & Science University

Related Stories

Recommended for you

New study offers insights on genetic indicators of COPD risk

January 16, 2018
Researchers have discovered that genetic variations in the anatomy of the lungs could serve as indicators to help identify people who have low, but stable, lung function early in life, and those who are particularly at risk ...

Don't hold your nose and close your mouth when you sneeze, doctors warn

January 15, 2018
Pinching your nose while clamping your mouth shut to contain a forceful sneeze isn't a good idea, warn doctors in the journal BMJ Case Reports.

Surfers three times more likely to have antibiotic-resistant bacteria in guts

January 14, 2018
Regular surfers and bodyboarders are three times more likely to have antibiotic resistant E. coli in their guts than non-surfers, new research has revealed.

New antifungal provides hope in fight against superbugs

January 12, 2018
Microscopic yeast have been wreaking havoc in hospitals around the world—creeping into catheters, ventilator tubes, and IV lines—and causing deadly invasive infection. One culprit species, Candida auris, is resistant ...

Dengue takes low and slow approach to replication

January 11, 2018
A new study reveals how dengue virus manages to reproduce itself in an infected person without triggering the body's normal defenses. Duke researchers report that dengue pulls off this hoax by co-opting a specialized structure ...

Different strains of same bacteria trigger widely varying immune responses

January 11, 2018
Genetic differences between different strains of the same pathogenic bacterial species appear to result in widely varying immune system responses, according to new research published in PLOS Pathogens.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.