PET scan distinguishes Alzheimer's from other dementia

November 1, 2007

A PET scan (positron emission tomography) that measures uptake of sugar in the brain significantly improves the accuracy of diagnosing a type of dementia often mistaken for Alzheimer’s disease, a study led by a University of Utah dementia expert has found.

The scan, FDG-PET, helped six doctors from three national Alzheimer’s disease centers correctly diagnose frontotemporal dementia (FTD) and Alzheimer’s in almost 90 percent of cases in the study—an improvement of as much as 14 percent from usual clinical diagnostic methods. FDG stands for fluorodeoxyglucose, a short-lived radioactive form of sugar injected into people during PET scans to show activity levels in different parts of the brain. In Alzheimer’s, low activity is mostly in the back part of the brain; in FTD, low activity is mostly in the front of the brain.

FDG-PET is an especially powerful tool in early treatment of FTD, said the study’s lead author, Norman L. Foster, M.D., professor of neurology and director of the Center for Alzheimer’s Care, Imaging and Research at the University of Utah School of Medicine.

FTD is a common cause of early onset dementia among people 45-64 years old and is marked by behavioral changes and language difficulties. Like Alzheimer’s, it can take years to develop and, for now, is incurable. Although FTD is a separate disorder, it often meets clinical diagnostic criteria for Alzheimer’s and often is misdiagnosed even by dementia experts.

“Early diagnosis of FTD can have a tremendous impact on the treatment for patients and their family members. Many patients are misdiagnosed and may be hospitalized and receive drugs for the wrong disease,” Foster said. “Accurate diagnosis bypasses the costs, side-effects, and frustration of misguided care. Furthermore, one-third of FTD patients have a family history of a similar disorder and family members need to know if they are at increased risk of the disease.”

The study was funded by the National Institute on Aging, a part of the National Institutes of Health.

“Dr. Foster’s work involving patients from several NIA-sponsored Alzheimer’s Disease Centers advances the use of PET imaging as a clinical tool,” said Creighton Phelps, Ph.D., program director of the Alzheimer Disease Centers at the National Institute on Aging. “Combined with the patient’s medical history and psychometric testing, it enhances a physician’s ability to more accurately distinguish between FTD and early-onset AD.”

As the U.S. population ages, the number of people with dementia is projected to increase markedly, with Utah and the Intermountain West expected to experience the fastest rate of growth. Although FDG-PET is widely available, it is not often used in dementia, because of insurance concerns. Medicare recently agreed to pay for FDG-PET scans to evaluate dementia, but currently many insurance companies in the Intermountain West and Utah do not. Foster is working to make FDG-PET scans available to those who need them and results of this study prove they sometimes are worth doing.

“This study shows FDG-PET is a reliable and valid diagnostic test that can aid physicians in making the sometimes difficult clinical distinction between AD (Alzheimer’s disease) and FTD,” Foster and his co-authors wrote. But PET scans alone are not enough to confirm FTD or Alzheimer’s. “A careful consideration of the medical history and examination will continue to be essential to dementia evaluation.”

The study has appeared online in the journal Brain.

Foster and his colleagues examined the medical records and FDG-PET scans of 45 patients who later had autopsies. Microscopic examination found 31 had Alzheimer’s and 14 had FTD. The researchers summarized the clinical course of the disease in each patient. The expert neurologists at the NIH centers, who had 10 years to 25 years of experience, then were asked to decide what caused each patient’s dementia using clinical information alone or using FDG-PET images.

The experts correctly distinguished FTD and Alzheimer’s using only the clinical methods in 76 percent to 79 percent of the cases. Using the FDG-PET scans alone,
however, the physicians correctly diagnosed the two dementias in 85 percent to 89 percent of cases. Adding FDG-PET to clinical information increased the correct diagnosis from 79 percent to 90 percent. The highest accuracy in diagnosis was achieved with SSP (stereotactic surface projection) displays, which summarize changes in brain activity and apply a statistical test to show significant areas of damage.

The PET scans also had other benefits. The researchers found in 42 percent of cases, the scans increased the experts’ confidence in a correct diagnosis or made them question and sometimes change an incorrect diagnosis.

Source: University of Utah

Explore further: Deadly combination in neurodegenerative diseases revealed

Related Stories

Deadly combination in neurodegenerative diseases revealed

November 13, 2017
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and death of nerve cells, which leads to problems with movement or mental functioning. Examples include Alzheimer's, ...

New insight into how brain cells die in Alzheimer's disease and frontotemporal dementia

October 9, 2017
Removal of a regulatory gene called LSD1 in adult mice induces changes in gene activity that that look unexpectedly like Alzheimer's disease, scientists have discovered.

Study reveals staggering economic burden of dementia in younger people

October 4, 2017
You may not have heard of it, but frontotemporal degeneration (FTD) accounts for 20 to 50 percent of dementia cases in people under the age of 65. FTD ravages an individual's quality of life by dramatically altering their ...

One type of dementia is especially costly

October 6, 2017
(HealthDay)—A type of early onset dementia known as frontotemporal degeneration appears to take an even more punishing toll on family finances than Alzheimer's disease, a new report suggests.

Is it Alzheimer's or another dementia form? Why doctors need to distinguish

July 28, 2017
Alzheimer's disease now affects an estimated 5.5 million Americans, and after decades of feverish work, researchers have so far failed to find a treatment that halts or reverses the inexorable loss of memory, function and ...

Old drug offers new hope to treat Alzheimer's disease

September 21, 2015
Scientists from the Gladstone Institutes have discovered that salsalate, a drug used to treat rheumatoid arthritis, effectively reversed tau-related dysfunction in an animal model of frontotemporal dementia (FTD). Salsalate ...

Recommended for you

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

In lab research, scientists slow progression of a fatal form of muscular dystrophy

December 8, 2017
In a paper published in the Nature journal Scientific Reports, Saint Louis University (SLU) researchers report that a new drug reduces fibrosis (scarring) and prevents loss of muscle function in an animal model of Duchenne ...

Double-blind study shows HIV vaccine not effective in viral suppression

December 7, 2017
(Medical Xpress)—A large team of researchers from the U.S. and Canada has conducted a randomized double-blind study of the effectiveness of an HIV vaccine and has found it to be ineffective in suppressing the virus. In ...

Time matters: Does our biological clock keep cancer at bay?

December 7, 2017
Our body has an internal biological or "circadian" clock, which cycles daily and is synchronized with solar time. New research done in mice suggests that it can help suppress cancer. The study, publishing 7 December in the ...

Novel harvesting method rapidly produces superior stem cells for transplantation

December 7, 2017
A new method of harvesting stem cells for bone marrow transplantation - developed by a team of investigators from the Massachusetts General Hospital (MGH) Cancer Center and the Harvard Stem Cell Institute - appears to accomplish ...

Inhibiting TOR boosts regenerative potential of adult tissues

December 7, 2017
Adult stem cells replenish dying cells and regenerate damaged tissues throughout our lifetime. We lose many of those stem cells, along with their regenerative capacity, as we age. Working in flies and mice, researchers at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.