Researchers Create Robot Driven by Moth's Brain

November 19, 2007
Researchers Create Robot Driven by Moth's Brain
Robo-Moth: UA robot driven by moth's brain.

In a notion taken from science fiction afficionados, University of Arizona researchers presented a robot that moves by using the brain impulses of a moth at the 37th annual Society for Neuroscience meeting in San Diego.

Charles M. Higgins, UA associate professor of electrical and computer engineering, and doctoral student Timothy Melano presented their findings and outlined the mechanics behind the robot’s movements.

The robot’s motion is guided by a tiny electrode implanted in the moth’s brain, Higgins said, specifically to a single neuron that is responsible for keeping the moth’s vision steady during flight. The neuron transmits electrical signals which are then amplified in the robot's base and through a mathematical formula, a computer translates the signals into action, making the robot move.

The moth is immobilize inside a plastic tube mounted atop the 6-inch-tall wheeled robot. To get the moth to imitate flight, Higgins and his team placed the moth in its apparatus on a circular platform surrounded by a 14-inch-high revolving wall painted with vertical stripes. The moth's neuron reacts to the movement of the stripes and the process begins.

The brain of a moth is about the size of a grain of rice. Although small, “its compact size and simplicity allows for an efficient way to do brain research,” Higgins said.

'The underlying point in the creation of the robo-moth is the notion of advancing neuroscience," he said.

The Society for Neuroscience meets annually to show advances made by scientists who work to study the architecture of the brain and use that knowledge in the design of new machines.

“Combining the study of machines and the mechanics of the human body has led to great advances that have direct health benefits such as the development of the mechanical heart. Unfortunately, we are nowhere as advanced in our study of the brain as we are in the study of the heart,” Higgins added.

“Scientists have reached a frustrating point in understanding the brain - we know how it operates, to an extent but don’t know how to stop brain damage or repair it when it occurs.” Higgins said. But that may change in the future. Higgins has thus far been able to have robo-moth turn left or right but not forward or backward. The longest recorded movement has been 88 seconds.

Higgins' work is funded through grants from the National Institutes of Health and the U.S. Air Force. Both agencies granted funding to help gain an understanding of human visual operations. Higgins' research is a step toward a future in brain engineering that will help repair damage or replace lost brain functionality.

Source: University of Arizona, By Rebecca Ruiz-McGill

Related Stories

Recommended for you

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
4 / 5 (1) Nov 19, 2007
The moth-er's of invention!
zbarlici
5 / 5 (1) Nov 19, 2007
thats the best one ive heard in moths, neil. This achievement will allow the japanese to finally develop giant neurogically-controlled battle space robots. I want in.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.