New research alters concept of how circadian clock functions

December 13, 2007

Scientists from the University of Cambridge have identified a molecule that may govern how the circadian clock in plants responds to environmental changes.

The researchers have discovered that a signalling molecule, known to be important for environmental stress signalling in plants, also regulates their circadian clock. They believe that the molecule may therefore incorporate information about environmental changes into the biological clock that regulates the physiology of plants. The research dramatically changes our current understanding of the circadian clock and may have important implications for the agricultural community.

In both plants and animals the operation of the circadian clock within the cell consists of feedback loops of gene expression, whereby a series of genes activate or repress one another in a cyclical manner that takes 24 hours.

However, researchers were surprised to find that rather than a protein or a gene, a small cellular signalling molecule called the cyclic adenosine diphosphate ribose (cADPR) plays an important role. This finding changes our current concept of the construction of circadian clocks from being just loops of gene expressions in the cell nucleus, to signalling networks that include components throughout the cell.

Understanding how the plant circadian clock functions could assist with increasing agricultural output for both food as well as new demands for biofuels. Experiments have shown that correct operation of the plant circadian clock may double plant productivity by increasing the rate of photosynthesis. The circadian clock also regulates the seasonal timing of flowering and seed production.

The study found that interfering with cADPR signalling caused incorrect timing of the circadian clock. For example, eliminating cADPR made the clock run slow. The researchers concluded that cADPR signals are therefore part of this timing system that helps optimize plant growth.

Additionally, the onset of environmental stresses such as drought and salinity are communicated within plant cells by the molecule cADPR. These signals cause cellular responses that allow the plant to survive the stress. The integration of this molecule into the circadian clock could therefore provide a system to change or stabilize the timing of biological events in order to ensure that cells survive the environmental alteration.

Dr Antony Dodd with the Department of Plant Sciences at Cambridge University explained, “The biological clock is thought to be essential for plant life and so it is essential to discover how it works. In our study we have identified a new type of circadian clock component that alters the concept of circadian clock architecture.”

Source: University of Cambridge

Explore further: Biologists discover an 'evening' protein complex that regulates plant growth

Related Stories

Biologists discover an 'evening' protein complex that regulates plant growth

July 13, 2011
Farmers and other astute observers of nature have long known that crops like corn and sorghum grow taller at night. But the biochemical mechanisms that control this nightly stem elongation, common to most plants, have been ...

Living against the clock: Does loss of daily rhythms cause obesity?

August 29, 2012
When Thomas Edison tested the first light bulb in 1879, he could never have imagined that his invention could one day contribute to a global obesity epidemic. Electric light allows us to work, rest and play at all hours of ...

Researcher: The clocks are ticking and the climate is changing

November 16, 2012
Dartmouth plant biologist C. Robertson (Rob) McClung is not your typical clock-watcher. His clocks are internal, biological, and operate in circadian rhythms—cycles based on a 24-hour period. Living organisms depend upon ...

Scientists find that our cells' power plants run on timers

March 16, 2016
When one eats may be as important as what one eats. New research at the Weizmann Institute of Science and in Germany, which recently appeared in the Proceedings of the National Academy of Sciences (PNAS), suggests that the ...

Group finds circadian clock common to almost all life forms

May 17, 2012
(Phys.org) -- A group of biology researchers, led by Akhilesh Reddy from Cambridge University have found an enzyme that they believe serves as a circadian clock that operates in virtually all forms of life. In a paper published ...

Setting the circadian clock

June 12, 2015
Often referred to as the "body clock", circadian rhythm controls what time of day people are most alert, hungry, tired or physically primed due to a complex biological process that is not unique to humans. Circadian rhythms, ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.