Discovery opens door to 'personalized' asthma therapy

January 17, 2008

In the last few years, “personalized medicine”— using genetic or other molecular biology-based diagnostic tests to customize treatment for a particular patient — has emerged as a powerful new tool for health care.

Therapy guided by genetic testing has proven highly successful in treating some types of leukemia and breast and lung cancer. Similar “personalized” therapies are on the horizon for other types of cancer, as well as diabetes, heart disease and other deadly disorders.

Now, University of Texas Medical Branch at Galveston (UTMB) researchers and their colleagues elsewhere have taken the first steps toward bringing the methods of personalized medicine to asthma.

Applying state-of-the-art protein screening techniques to samples taken from 84 asthmatic volunteers, they’ve made the first identification of different subtypes of asthma based on distinct “protein profiles,” unique combinations of 10 or more proteins with which they are associated.

One of these profiles corresponds to a variety of severe, treatment-resistant asthma that, while rare, is responsible for 40 to 50 percent of the total health care costs associated with the disease.

“We know that in asthma some people respond to very specific types of therapies and others don’t,” said Dr. Allan Brasier, director of UTMB’s Sealy Center for Molecular Medicine and a senior author of a paper on the study appearing in the just-published January issue of the Journal of Allergy and Clinical Immunology (online at journals.elsevierhealth.com/periodicals/ymai). “Being able to discover different asthma subtypes should allow us to tailor our treatments to increase the odds of a positive response,” Brasier added.

To obtain their samples, researchers squirted a small amount of saline solution through tiny tubes into the anesthetized volunteers’ lungs. They then sucked the saline back out, bringing with it proteins washed free from walls of the network of air passages and sacs in the lungs (which swell closed when they are inflamed during an asthma attack).

“In each sample, we measured 25 different cytokines, inflammatory signaling proteins that play a very important role in asthma,” Brasier said. “We found that our samples fell into one group associated with severe asthma, another group that looks like it represents less severe disease, and two additional groups whose significance we don’t yet understand.”

The unknown protein profiles, Brasier said, could be produced by types of asthma that respond differently to treatment, or that are generated by different genetic or environmental sources. These and other as-yet-undiscovered protein patterns may eventually be used to diagnose types of asthma aggravated by cigarette smoke, for example, or that cause a steady decline in lung function over a number of years.

“Until now, all we knew was that asthma was a disease that manifested itself in many different ways,” Brasier said. “By using these patterns of multiple different proteins, we can start defining those different subtypes much more accurately — which is very useful for trying to identify which ones will respond to which treatments.”

According to Brasier, clinical applications of asthma protein profiling will have to await the discovery of additional protein patterns to match with other subtypes of asthma, as well as more sensitive tests that would allow for less invasive sampling techniques—a blood test, for example, or an analysis of exhaled breath.

“We’re still a little bit away from treating people, but that’s coming,” Brasier said. “This is the proof of principle that you can apply proteomic patterns to personalized medicine in asthma.”

Source: University of Texas Medical Branch at Galveston

Related Stories

Recommended for you

H7N9 influenza is both lethal and transmissible in animal model for flu

October 19, 2017
In 2013, an influenza virus that had never before been detected began circulating among poultry in China. It caused several waves of human infection and in late 2016, the number of people to become sick from the H7N9 virus ...

Migraines may be the brain's way of dealing with oxidative stress

October 19, 2017
A new perspective article highlights a compelling theory about migraine attacks: that they are an integrated mechanism by which the brain protects and repairs itself. Recent insightful findings and potential ways to use them ...

Flu simulations suggest pandemics more likely in spring, early summer

October 19, 2017
New statistical simulations suggest that Northern Hemisphere flu pandemics are most likely to emerge in late spring or early summer at the tail end of the normal flu season, according to a new study published in PLOS Computational ...

New insights into herpes virus could inform vaccine development

October 18, 2017
A team of scientists has discovered new insights into the mechanisms of Epstein-Barr virus (EBV) infection, as well as two antibodies that block the virus' entry into cells. The findings, published in Proceedings of the National ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

Portable 3-D scanner assesses patients with elephantiasis

October 17, 2017
An estimated 120 million people worldwide are infected with lymphatic filariasis, a parasitic, mosquito-borne disease that can cause major swelling and deformity of the legs, a condition known as elephantiasis. Health-care ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.