Gene dose affects tumor growth

January 2, 2008

Researchers at Johns Hopkins and Ohio State University have found that the number of copies of a particular gene can affect the severity of colon cancer in a mouse model. Publishing in the Jan. 3 issue of Nature, the research team describes how trisomy 21, or Down syndrome in humans, can repress tumor growth.

“We took a new approach to a 50-year-old debate about whether people with Down syndrome develop cancer less often than other people,” says Roger H. Reeves, Ph.D., professor of physiology in the McKusick-Nathans Institute of Genetic Medicine at Hopkins. “Studying the genetic differences associated with Down syndrome has revealed a new way of thinking about repressing cancer growth in everyone.”

The research team started with a mouse model that carries, rather than a whole extra copy of chromosome 21 as is seen in trisomy 21, or Down syndrome, a partial copy containing 108 genes. They then mated those trisomic mice to mice that carry a mutation that causes intestinal tumors, similar to those seen in colon cancer in humans. The trisomic, colon cancer mice had 44 percent fewer intestinal tumors compared to the colon cancer mice without the extra 108 genes.

The team then used another mouse model of Down syndrome, one that carries extra copies of only 33 of the genes on chromosome 21, and repeated their genetic crosses. Mice with three copies of the 33 genes developed half the number of tumors as mice with the standard two copies. Mice carrying a deletion that left them with only one copy of these 33 genes developed twice the number of tumors as usual.

“Not only does having an extra copy of one or more of these genes repress tumor formation, it turns out that missing a copy enhances tumor growth-this was really surprising,” says Reeves.

Taking a closer look at the 33 genes to identify a likely culprit for the dose-specific relationship with tumor growth, the researchers focused on one gene, Ets2, which previously has been implicated as a cause of cancer. However, some research suggested that Ets2 activity might be involved in pathways that cause cells to die.

They then repeated their genetic crosses, this time with mice that had three, two or one copy of the Ets2 gene only. Once again, mice that were trisomic for 33 genes (including Ets2) had fewer tumors, but mice that were trisomic for 32 of these genes but had the normal two copies of Ets2 had a tumor number similar to control (non-trisomic) mice. Mice with just one copy of Ets2 developed more tumors.

“These results support studies concluding that people with Down syndrome get fewer cancers of many types. While we’ve only shown this effect with Ets2 and a particular type of colon tumor in mice, we think that the human Ets2 gene might contribute to resistance toward other types of cancer, based on what happens in Down syndrome,” says Reeves.

“Our findings are significant because they broaden the definition of an ‘oncogene’ or ‘tumor suppressor gene’ to include the effect of gene dosage,” says Michael Ostrowski, an Ohio State cancer researcher and Ets2 expert who developed the mouse models used in this study. “They also suggest that finding ways to increase the expression of genes such as Ets2 might lead to a new strategy for treating or controlling cancer,” he says.

Source: Johns Hopkins Medical Institutions

Related Stories

Recommended for you

Combination immunotherapy targets cancer resistance

November 22, 2017
Cancer immunotherapy drugs have had notable but limited success because in many cases, tumors develop resistance to treatment. But researchers at Yale and Stanford have identified an experimental antibody that overcomes this ...

Researchers discover specific tumor environment that triggers cells to metastasize

November 21, 2017
A team of bioengineers and bioinformaticians at the University of California San Diego have discovered how the environment surrounding a tumor can trigger metastatic behavior in cancer cells. Specifically, when tumor cells ...

New study points the way to therapy for rare cancer that targets the young

November 21, 2017
After years of rigorous research, a team of scientists has identified the genetic engine that drives a rare form of liver cancer. The findings offer prime targets for drugs to treat the usually lethal disease, fibrolamellar ...

Clinical trial suggests new cell therapy for relapsed leukemia patients

November 20, 2017
A significant proportion of children and young adults with treatment-resistant B-cell leukemia who participated in a small study achieved remission with the help of a new form of gene therapy, according to researchers at ...

Cell-weighing method could help doctors choose cancer drugs

November 20, 2017
Doctors have many drugs available to treat multiple myeloma, a type of blood cancer. However, there is no way to predict, by genetic markers or other means, how a patient will respond to a particular drug. This can lead to ...

Researchers discover a new target for 'triple-negative' breast cancer

November 20, 2017
So-called "triple-negative" breast cancer is a particularly aggressive and difficult-to-treat form. It accounts for only about 10 percent of breast cancer cases, but is responsible for about 25 percent of breast cancer fatalities.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.