Monkey's Thoughts Make Robot Walk from Across the Globe

January 17, 2008

In a first-of-its-kind experiment, the brain activity of a monkey has been used to control the real-time walking patterns of a robot halfway around the world, according to researchers at Duke University Medical Center.

The Duke team is working with the Computational Brain Project of the Japan Science and Technology Agency (JST) on technology they hope will one day help those with paralysis regain the ability to walk.

"We believe this research could have significant implications for severely paralyzed patients," said senior study investigator Miguel Nicolelis, M.D., Ph.D., the Anne W. Deane Professor of Neuroscience at Duke. "This is a breakthrough in our understanding of how the brain controls the movement of our legs, which is vital information needed to ultimately develop robotic prosthesis."

Researchers used some of the most sophisticated methods available to capture activity from hundreds of brain cells located in multiple areas of the brain. To collect this information, two rhesus monkeys were implanted with electrodes that gathered feedback from cells in the brain's motor and sensory cortex. This technology recorded how the cells responded as the monkey walked on a treadmill at a variety of speeds and while walking forward and backward. At the same time, sensors on the monkey's legs tracked the actual walking patterns of the legs while moving.

Using mathematical models, the researchers were able to analyze the relationship between the leg movement and brain cell activity to determine how well the information gathered from the brain cells was able to predict the exact speed of movement and stride length of the legs.

"We found that certain neurons in multiple areas of the brain fire at different phases and at varying frequency, depending on their role in controlling the complex, multi-muscle process of motion. Each neuron provides us with a small piece of the puzzle that we compile to predict the walking pattern of the monkeys with high accuracy," Nicolelis explained.

"In this experiment, we were able to record brain activity, predict what the pattern of locomotion will be and send the signal from the motor commands of the animal to the robot," Nicolelis said. "We also created a real-time transmission of information that allowed the brain activity of the monkey in North Carolina to control the commands of a robot in Japan. As a result, they can walk in complete synchronization."

"We are delighted with the remarkable outcome of this collaboration between Duke University and JST, as now we can further advance our research to better understand how the brain processes information," said Mitsuo Kawato, M.E., Ph.D., director of ATR Computational Neuroscience Laboratories and research director of the Computational Brain Project of JST.

The experiment built on earlier work conducted by Nicolelis' laboratory in which monkeys were able to control the reaching and grasping movements of a robotic arm with only their brain signals.

"We are also exploring how the brain processes feedback sensations - both visual and electrical - from the robot. This feedback plays a critical role in completing the act of walking. In essence, we are seeking to capture the information that the foot sends to your brain when it touches the ground as you walk," Nicolelis said.

He added, "The most stunning finding is that when we stopped the treadmill and the monkey ceased to move its legs, it was able to sustain the locomotion of the robot for a few minutes - just by thinking - using only the visual feedback of the robot in Japan."

The researchers are estimating that work will begin within the next year to develop prototypes of the robotic leg braces for potential use with humans.

Source: Duke University

Explore further: How to build your own personal robot

Related Stories

How to build your own personal robot

November 1, 2018
More than one million people are hospitalised each year in the EU with a brain injury. Such injuries are often the result of blood clots or accidents, and can occur at any age.

'Human brain' supercomputer with 1 million processors switched on for first time

November 2, 2018
The world's largest neuromorphic supercomputer designed and built to work in the same way a human brain does has been fitted with its landmark one-millionth processor core and is being switched on for the first time.

Study gives new insight into how our brain perceives places

October 22, 2018
Nearly 30 years ago, scientists demonstrated that visually recognizing an object, such as a cup, and performing a visually guided action, such as picking the cup up, involved distinct neural processes, located in different ...

Machines that learn language more like kids do

October 31, 2018
Children learn language by observing their environment, listening to the people around them, and connecting the dots between what they see and hear. Among other things, this helps children establish their language's word ...

A new approach to infuse spatial notions into robotics systems

October 16, 2018
Researchers at Sorbonne Universités and CNRS have recently investigated the prerequisites for the emergence of simplified spatial notions in robotic systems, based on on a robot's sensorimotor flow. Their study, pre-published ...

A new strategy to correct imperfections in occupancy grid maps

October 19, 2018
Researchers at Laboratório de Computação de Alto Desempenho (LCAD) of Universidade Federal do Espírito Santo (UFES), in Brazil, have devised a novel strategy for correcting imperfections in occupancy grid maps by correcting ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.