Skin care: new research into scar-free healing

January 21, 2008
Skin care: new research into scar-free healing
Treating skin wounds (blue) with osteopontin antisense DNA (top) reduces the size of scars (area between arrows)

New research from the University of Bristol shows that by suppressing one of the genes that normally switches on in wound cells, wounds can heal faster and reduce scarring. This has major implications not just for wound victims but also for people who suffer organ tissue damage through illness or abdominal surgery.

When skin is damaged a blood clot forms and cells underneath the wound start to repair the damage, leading to scarring. Scarring is a natural part of tissue repair and is most obvious where skin has healed after a cut or burn. It ranges from trivial (a grazed knee) to chronic (diabetic leg ulcers) and is not limited to the skin. All tissues scar as they repair; for example, alcohol-induced liver damage leads to fibrosis and liver failure, and after most abdominal surgeries scars can often lead to major complications.

Tissue damage triggers an inflammatory response by white cells to protect skin from infection by killing microbes. The same white cells guide the production of layers of collagen. These layers of collagen help the wound heal but they stand out from the surrounding skin and result in scarring. Research by Professor Paul Martin and colleagues at the University of Bristol shows that osteopontin (OPN) is one of the genes that triggers scarring and that applying a gel, which suppresses OPN to the wound, can accelerate healing and reduces scarring. It does this in part by increasing the regeneration of blood vessels around the wound and speeding up tissue reconstruction.

The findings will be published by the Journal of Experimental Medicine on 26 January in a paper entitled ‘Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring’. The paper is available online now.

Speaking of the discovery, Professor Martin said: ‘White blood cells (macrophages), and the chemical signals (PDGF) delivered to the wound cells, and osteopontin itself are now all clear targets for developing medicines to improve healing of skin wounds and other organs where fibrotic tissue repair can be debilitating. We hope that it won’t be too long before such therapies are available in the clinic. Indeed, the technique for suppressing OPN to reduce scarring is currently being licensed and patented by a Biotech company specializing in wound-healing therapies.’

Earlier research by Professor Martin’s lab and others has shown that embryos of many species, including humans, heal wounds without leaving a scar. Now it looks like the same may be true for adults.

Source: University of Bristol

Explore further: Researchers identify 'signal' crucial to stem cell function in hair follicles

Related Stories

Topical curcumin gel effective in treating burns and scalds

March 14, 2017

What is the effect of Topical Curcumin Gel for treating burns and scalds? In a recent research paper, published in the open access journal BioDiscovery, Dr. Madalene Heng, Clinical Professor of Dermatology at the David Geffen ...

New reconstructive surgery for female genital mutilation

March 6, 2017

There is new hope for the hundreds of millions of women worldwide who have been subjected to genital mutilation. A surgeon in Penn Medicine's Center for Human Appearance has developed a reconstructive procedure that can increase ...

Recommended for you

The ethics of tracking athletes' biometric data

January 18, 2017

(Medical Xpress)—Whether it is a FitBit or a heart rate monitor, biometric technologies have become household devices. Professional sports leagues use some of the most technologically advanced biodata tracking systems to ...

Study shows blood products unaffected by drone trips

December 7, 2016

In what is believed to be the first proof-of-concept study of its kind, Johns Hopkins researchers have determined that large bags of blood products, such as those transfused into patients every day, can maintain temperature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.