Stem cells make bone marrow cancer resistant to treatment

January 11, 2008

Scientists at the Johns Hopkins Kimmel Cancer Center say they have evidence that cancer stem cells for multiple myeloma share many properties with normal stem cells and have multiple ways of resisting chemotherapy and other treatments.

A report on the evidence, published in the Jan. 1 issue of the journal Cancer Research, may explain why the disease is so persistent, the Johns Hopkins scientists say, and pave the way for treatments that overcome the cells’ drug resistance. Multiple myeloma affects bone marrow and bone tissue.

“Cancer stem cells that have distinct biology and drug sensitivity as compared with the bulk of a cancer may explain why multiple myeloma, like many other cancers, so often relapses even after chemotherapy puts patients into remission,” says Richard J. Jones, M.D., professor and director of bone marrow transplant at Hopkins’ Kimmel Cancer Center and one of the scientists who authored the new report.

The existence of cancer stem cells - a topic of some controversy in cancer biology - is seen by some scientists as a useful explanation for the long history of difficulty in overcoming some cancers’ persistence.

The Hopkins investigators previously had uncovered a rare stem cell in myeloma, accounting for less than one percent of all the cancer’s cells. Working with cell samples from myeloma patients, the team found that this stem cell originates from immune system B-cells and is capable of giving rise to the malignant bone marrow cells characteristic of the disease.

In the current study, the scientists isolated stem cells from the blood of four patients with multiple myeloma and transplanted them into mice. All of the animals developed hind-limb paralysis and showed signs of cancer in the bone marrow. By contrast, plasma cells that were transplanted from multiple myeloma patients to mice did not engraft. The Hopkins scientists say that recreating the disease in mice provides more evidence that these cells act as cancer stem cells.

The Johns Hopkins scientists also compared the response of these special stem cells with the bulk of multiple myeloma plasma cells, to four different chemotherapy medications commonly used to treat patients with the disease: dexamethasone, lenadilomide, bortezomib and 4-hydroxycyclophosphamide. While all four agents significantly inhibited the growth of the plasma cells, none inhibited the stem cells.

To their surprise, the research team noted that the multiple myeloma stem cells resemble other types of adult stem cells and exhibit similar properties that may make them resistant to chemotherapy. They found that the stem cells contain high levels of enzymes that neutralize toxins, like cancer drugs, and expel them through miniature pumps on their cell surface. The investigators believe that these drug-fighting enzymes and pumps - also plentiful in normal stem cells - may help cancer stem cells resist treatment.

“Nature made normal stem cells very hearty for a reason, namely to survive and help repair damaged tissues and organs after injury or illness,” says William Matsui, M.D., an assistant professor of oncology at Hopkins and the study’s lead investigator. “To us, it makes sense that the same processes that protect normal stem cells also exist in cancer stem cells to make them resistant to chemotherapy. We need to develop new ways to target the specific biology of cancer stem cells to prevent the continued production of mature tumor cells and disease relapse.”

“Standard cancer therapy is like mowing the weed - it gets rid of the disease transiently but the dandelion always grows back. We need to get rid of the root to cure disease, and therefore need a different type of therapy - mowing won’t work,” says Jones.

Matsui says the work also may make it possible to track the rare myeloma stem cells as a marker of how well a patient is doing during treatment.

Multiple myeloma is the second most common blood cancer and strikes more than 14,000 Americans each year. Close to 11,000 will die from the disease.

Source: Johns Hopkins Medical Institutions

Explore further: New findings explain how UV rays trigger skin cancer

Related Stories

New findings explain how UV rays trigger skin cancer

October 18, 2017
Melanoma, a cancer of skin pigment cells called melanocytes, will strike an estimated 87,110 people in the U.S. in 2017, according to the Centers for Disease Control and Prevention. A fraction of those melanomas come from ...

Team finds a potentially better way to treat liver cancer

October 12, 2017
A Keck School of Medicine of USC research team has identified how cancer stem cells survive. This finding may one day lead to new therapies for liver cancer, one of the few cancers in the United States with an incidence rate ...

Bolstering fat cells offers potential new leukemia treatment

October 16, 2017
Killing cancer cells indirectly by powering up fat cells in the bone marrow could help acute myeloid leukemia patients, according to a new study from McMaster University.

German research advances in cancer and blood disorders reported in human gene therapy

October 18, 2017
Virotherapy capable of destroying tumor cells and activating anti-tumor immune reactions, and the use of engineered hematopoietic stem cells (HSCs) to deliver replacement genes that have the potential to cure blood diseases ...

Scientists identify biomarker for progression and drug response in brain cancer

October 16, 2017
Scientists at the Icahn School of Medicine at Mount Sinai, Sema4, and collaborating institutions including Colorado State University and Fred Hutchinson Cancer Center reported results today from a glioblastoma study in which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

Recommended for you

Microbiologists contribute to possible new anti-TB treatment path

October 23, 2017
As part of the long effort to improve treatment of tuberculosis (TB), microbiologists led by Yasu Morita at the University of Massachusetts Amherst report that they have for the first time characterized a protein involved ...

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

New study shows how cells can be led down non-cancer path

October 23, 2017
As cells with a propensity for cancer break down food for energy, they reach a fork in the road: They can either continue energy production as healthy cells, or shift to the energy production profile of cancer cells. In a ...

Proton therapy lowers treatment side effects in pediatric head and neck cancer patients

October 23, 2017
Pediatric patients with head and neck cancer can be treated with proton beam therapy (PBT) instead of traditional photon radiation, and it will result in similar outcomes with less impact on quality of life. Researchers from ...

Big Data shows how cancer interacts with its surroundings

October 23, 2017
By combining data from sources that at first seemed to be incompatible, UC San Francisco researchers have identified a molecular signature in tissue adjacent to tumors in eight of the most common cancers that suggests they ...

Symptom burden may increase hospital length of stay, readmission risk in advanced cancer

October 23, 2017
Hospitalized patients with advanced cancer who report more intense and numerous physical and psychological symptoms appear to be at risk for longer hospital stays and unplanned hospital readmissions. The report from a Massachusetts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.