Uncovering the Achilles' heel of the HIV-1 envelope

January 11, 2008

New structural details illustrate how a promising class of antibodies may block human immunodeficiency virus (HIV)-1 infection and reveal valuable clues for design of an effective HIV-1 vaccine.

The findings, published by Cell Press in the January issue of Immunity, are particularly significant as antibody induction appears to be a key and necessary component of an effective HIV vaccine, evidenced by the recent failure of vaccines that stimulated only the T cell arm of the immune system to protect humans from contracting HIV-1.

Profound challenges have interfered with creation of a preventative vaccination to halt the global spread of HIV-1. For example, the HIV-1 envelope protein, the only target for neutralizing antibodies, is highly variable among isolates and masked by sugar molecules, allowing the virus to escape antibody attack. “Not surprisingly, only a handful of broadly neutralizing antibodies (BNAbs) have been identified and they are rarely elicited during natural human infection,” explains research leader Dr. Ellis L. Reinherz from the Dana-Farber Cancer Institute and Harvard Medical School in Boston, Massachusetts.

The BNAbs that have been identified are directed against a portion of HIV-1 called the membrane proximal ectodomain region (MPER). This region lies at the base of the viral envelope protein comprised of the gp120 protein plus the membrane anchoring gp41 subunits adjacent to the viral membrane. A major conundrum has been the basis for the lack of human antibody response against the MPER segment since it is accessible to antibody and is highly conserved, even among different HIV-1 viral isolates around the world.

The present study reveals that much of the MPER is actually embedded in the viral membrane. As such, this stealthy segment appears to divert the immune attack elsewhere, namely to the exposed variable elements of the viral envelope and immunodominant regions which do not confer useful neutralization. The researchers also discovered a hinge in the middle of the MPER permitting segmental flexibility, an important feature in facilitating fusion of the virus with the human host immune cells.

BNAbs such as the monoclonal 4E10 antibody target this hinge area and cause the MPER to undergo dynamic changes that reveal key pieces of itself critical for viral fusion that were buried deep in the membrane. As a result, the antibody is then able to achieve a tighter hold on the virus, restrict hinge mobility and impede the ability of the virus to fuse to the membrane of the host cell.

Importantly, the published structure of the lipid-embedded MPER also identifies those few residues poking out from the viral membrane. These may be ideal targets for vaccine design if properly configured in a synthetic lipid coat that conserves the native shape of the MPER and focuses production of antibodies against this Achilles' heel of the viral envelope.

While this research is still at an early experimental stage, it provides a plausible explanation as to why previous attempts, which neglected to preserve the native conformation of the MPER necessary for eliciting a broadly neutralizing antibody with 4E10-like specificity, were unsuccessful and offers a new approach to the design of antibody-eliciting vaccines to prevent HIV-1.

Source: Cell Press

Related Stories

Recommended for you

Risks to babies of mothers with HIV from three antiretroviral regimens appear to be low

April 25, 2018
The risk for preterm birth and early infant death is similar for three antiretroviral drug regimens taken by pregnant women with HIV according to a new study from Harvard T.H. Chan School of Public Health.

New method allows scientists to study how HIV persists

April 24, 2018
After 35 years of rigorous research, there is still no cure for HIV. Current drugs can be used to halt the infection, but fall short of reaching hidden reserves of dormant virus that can lurk for life within infected white ...

HIV-1 viruses transmitted at birth are resistant to antibodies in mother's blood

April 19, 2018
Of the genetically diverse population of HIV-1 viruses present in an infected pregnant woman, the few she might transmit to her child during delivery are resistant to attack by antibodies in her blood, according to new research ...

Top HIV cure research team refutes major recent results on how to identify HIV persistence

April 18, 2018
An international team focused on HIV cure research spearheaded by The Wistar Institute in collaboration with the University of Pennsylvania and Vall d'Hebron Research Institute (VHIR) in Barcelona, Spain, established that ...

Scientists discover new way that HIV evades the immune system

April 17, 2018
Scientists have just discovered a new mechanism by which HIV evades the immune system, and which shows precisely how the virus avoids elimination. The new research shows that HIV targets and disables a pathway involving a ...

Team develops new way to fight HIV transmission

April 16, 2018
Scientists at the University of Waterloo have developed a new tool to protect women from HIV infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.