Bacterial toxin closes gate on immune response

February 13, 2008

Researchers at the University of Pennsylvania School of Medicine have demonstrated that a bacterial toxin from the common bacterium Staphylococcus aureus shuts down the control mechanism of the tunnel, called an ion channel, in immune cell membranes. Shutting down ion channels has long been known to suppress the immune response, and the bacteria may use the toxin to neutralize host defenses against bacteria. The study is published in the February 14 issue of Nature.

Immune cells, like other cells, have ion channels in their membranes. When the voltage-sensing part of the channel detects an electrical change in the cell membrane, the channel gate opens, allowing small ions such as sodium, potassium, or calcium to flow across the cell membrane. The channels in immune cells called Kv1.3 channels allow only potassium ions to pass, and the activity of these channels is required for triggering an immune response.

“We have provided a key piece of evidence for the hypothesis that the negatively charged phosphate groups of membrane lipids around voltage sensors provide the critical electric balance for some of these positive charges in the sensors,” says Zhe Lu, MD, PhD, of the Department of Physiology at Penn.

The research team, that included Yanping Xu, MD, PhD and Yajamana Ramu, PhD, showed that removal of phosphate head groups from some membrane lipids by the bacterial toxin called sphingomyelinase (SMase) C shuts down the Kv1.3 channel. Therefore if the positive charges are not properly balanced by negative charges, the electrical sensor cannot move to “open the gate” of the channel. And, if the channel fails to open, the immune response is derailed.

“Our study builds on the efforts of two senior colleagues in the Department,” says Lu. Twenty-five years ago, Professor Clay Armstrong (now emeritus) hypothesized that the positive charges in the electrical sensor must be balanced by negative charges for the sensor to function properly. And a few years later, Professor Carol Deutsch, among others, demonstrated the presence of potassium channels controlled by voltage in immune cells.

SMase C is made by, among other bacteria, S. aureus, a pathogenic bacterium that causes a range of infections from minor skin lesions to toxic shock. “This finding raises the intriguing possibility that the SMase C action against Kv1.3 helps S. aureus to neutralize host defenses,” state the authors in the paper.

The findings of this study suggest the possibility that identifying inhibitors of SMase C may be a way to combat S. aureus infections. One strain of S. aureus is the much-talked-about, MRSA, or methycillin-resistant S. aureus. Specific inhibitors of SMase C may expand the choice of therapies for treating MRSA and other resistant S. aureus infections.

This study was conducted in a common experimental system where frog eggs were engineered to have particular voltage-gated ion channels in their membranes. SMases used in the study were purified from bacteria engineered to produce the enzymes.

This new study follows a 2006 study by the same research team showing that an SMase from the brown recluse spider could activate voltage-gated ion channels. In 2007 the team discovered that SMases from lung-infecting bacteria inactivate ion channels that conduct chloride ions, which would in turn aggravate lung infection in some cystic fibrosis patients.

Source: University of Pennsylvania

Explore further: Researchers identify potential drug that could help treat cystic fibrosis

Related Stories

Researchers identify potential drug that could help treat cystic fibrosis

October 14, 2014
From an early age, the lungs of individuals with cystic fibrosis (CF) are colonised and infected by bacteria, a common example being S. aureus. These bacterial infections cause the lungs to become inflamed, infected, and ...

Notorious pathogen forms slimy 'streamers' to clog up medical devices

June 26, 2014
A group of researchers from the US has moved a step closer to preventing infections of the common hospital pathogen, Staphylococcus aureus, by revealing the mechanisms that allow the bacteria to rapidly clog up medical devices.

Blood-cleansing biospleen device developed for sepsis therapy

September 14, 2014
Things can go downhill fast when a patient has sepsis, a life-threatening condition in which bacteria or fungi multiply in a patient's blood—often too fast for antibiotics to help. A new device inspired by the human spleen ...

Recommended for you

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

Widespread errors in 'proofreading' cause inherited blindness

October 12, 2018
Mistakes in "proofreading" the genetic code of retinal cells is the cause of a form of inherited blindness, retinitis pigmentosa (RP) caused by mutations in splicing factors.

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.