Brain Damage Occurs Within Minutes from the Onset of a Stroke, Study Reveals

February 14, 2008

Scientists at the Brain Research Centre at the University of British Columbia and Vancouver Coastal Health Research Institute have found that harmful changes to the brain's synaptic connections occur within the first three minutes following a stroke.

The finding, using mouse models, published today in the international Journal of Neuroscience, suggests cardiac arrest and stroke in humans would trigger a similar chain of events. Stroke is caused by loss of blood flow to the brain and is a leading cause of death and disability in North America. Synapses are tiny brain switches that relay information from one neuron to another.

“Damage to the brain’s synaptic connections occurs much sooner than expected,” says Tim Murphy, UBC Professor of Psychiatry, senior investigator at the Brain Research Centre, and a member of the Vancouver Coastal Health Research Institute. “Potentially, stroke or cardiac arrest patients have undergone major changes in the structure of their synapses before anyone could think about calling 911.”

Murphy, lead author of the study says, “although stroke can be treated within three hours of onset, the implications of this study are that considerable damage – some of which is irreversible – has occurred almost immediately after a stroke. Given these results, stroke prevention through management of risk factors should be given greater emphasis.”

Using high-resolution microscopy, scientists demonstrated that the structure and function of cortical synapses were severely compromised only one to three minutes after stroke during a massive wave of electrical discharge termed ischemic depolarization. Importantly, if blood flow was restored, as can occur using stroke treatments with clot-busting drugs, 94 per cent of all synaptic connections recovered from severe deformation. Further studies will examine the upper limits of blood flow restoration time and synaptic connection recovery.

The study suggests that even short duration loss of blood flow, (approximately one to three minutes) could lead to damaged synapses. In humans, brief loss of brain blood flow can occur during medical procedures such as bypass surgery, which can trigger blood clots to enter the brain. Other conditions with brief recurrent loss of blood flow include transient ischemia attacks, or mini strokes. For these situations Murphy suggests, “Strategies that control ischemic depolarization associated with stroke's effect on synapses would be fruitful avenues for future drug development.”

The study is available for free at the journal’s website: www.jneurosci.org

Source: University of British Columbia

Explore further: Researchers upend longstanding idea that astrocytes can't be differentiated from each other

Related Stories

Researchers upend longstanding idea that astrocytes can't be differentiated from each other

July 14, 2017
From afar, the billions of stars in our galaxy look indistinguishable, just as the billions of star-shaped astrocytes in our brains appear the same as each other. But UCLA researchers have now revealed that astrocytes, a ...

Protein may protect against heart attack

July 14, 2017
DDK3 could be used as a new therapy to stop the build-up of fatty material inside the arteries

Missing link identified between immune cells and Alzheimer's

July 12, 2017
By studying the effects of immune cells that surround blood vessels in the brain, Weill Cornell Medicine researchers have discovered a new pathway involving these cells that may contribute to the cause of Alzheimer's disease.

Does carrying extra weight offer better survival following a stroke?

June 29, 2017
Despite the fact that obesity increases both the risk for stroke and death, a new study has found that people who are overweight or even mildly obese survive strokes at a higher rate as compared to those with a normal body ...

Skin cell model advances study of genetic mutation linked to heart disease, stroke risk

June 27, 2017
Using a new skin cell model, researchers have overcome a barrier that previously prevented the study of living tissue from people at risk for early heart disease and stroke. This research could lead to a new understanding ...

Hints of some steps that may boost brain health in old age

June 22, 2017
Are you seeking steps to keep your brain healthy in old age?

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.