Web will work wonders for the faint hearted

February 14, 2008
Web will work wonders for the faint hearted
PhD student David Keeling with the web material that will be used in the development of the heart assist device. Credit: Simon & Simon Photography

A new device could put the beat back into weak hearts - and free patients from a lifetime of anti-rejection drugs.

Current implanted heart assist devices function by sucking blood from the ventricles and then expelling it into downstream vessels. Whilst these have been successful in prolonging the lives of heart patients, they come into contact with the blood stream and hence require life-long drug therapy to suppress the immune system and prevent blood clotting. In addition, many of these devices use high speed turbines to produce the pumping force, and this has been proven to cause damage to cells within the blood increasing the chance of clots forming.

The ingenious device being developed by engineers at the University of Leeds provides a less invasive alternative. The team has developed a specially-woven web made from biocompatible material which will not be rejected by the body.

The webbing wraps around the heart and therefore does not come into contact with the blood stream. Inbuilt sensors recognise when the heart wants to beat and trigger a series of miniature motors which cause the web to contract – increasing the internal pressure and assisting the heart to pump the blood around the body.

The team consists of Drs Peter Walker (who devised the original concept) and Martin Levesley from the University’s School of Mechanical Engineering, cardiac consultants Kevin Watterson and Osama Jaber from Leeds General Infirmary and engineering PhD student David Keeling. The research has been funded by Leeds-based medical charity Heart Research UK.

“It’s a really simple concept that works in the same way as when you squeeze a plastic bottle, forcing the liquid inside to rise,” says PhD student David Keeling who has built a special rig to test the device.

The device is currently at prototype stage with team using a computer simulated model of the human blood flow circuit coupled to David’s mechanical rig. The rig replicates the motion of the heart within the simulation under different conditions, and allows the team to test their web device. The group is currently testing their latest prototype, aiming to refine design and assist strategies. Says David: “We’ve been looking at finding the optimum timing to trigger and also length of the compressive squeeze.”

Once the mechanics have been perfected, the team intends to simulate the effects of different heart diseases to gauge the potential success of the device.

Potential uses for the device are huge. As well as offering support to people suffering from heart and valve problems, the device could also be a bridging aid to patients as they wait for transplants, providing them with a better quality of life. Says David: “Recent research has found that with some heart diseases, supporting the heart for a short period with an assistive device reduces the work-load on the heart and allows it to rest and recover. Our device also allows for a controlled relaxation of the heart muscle after contraction, which means that it’s being supported throughout the whole heartbeat process. It’s the same as when you pull a muscle in any other part of your body, rest can often be the best therapy.”

Source: University of Leeds

Explore further: 'Explosive evolution' of techniques to restore blood flow to the brain

Related Stories

'Explosive evolution' of techniques to restore blood flow to the brain

January 19, 2018
Recent decades have seen an "explosive evolution" of techniques to restore blood flow to areas of the brain endangered by stroke or clogged arteries, according to a report by Loyola Medicine neurologists and neurosurgeons.

Astronauts' circulation woes can cue better health for all

January 19, 2018
A little more time on the treadmill may be just what the doctor ordered for Canada's astronauts battling microgravity's effects on circulation, according to one Western researcher.

Analysis shows lack of evidence that wearable biosensors improve patient outcomes

January 16, 2018
Wearable biosensors have grown increasingly popular as many people use them in wristbands or watches to count steps or track sleep. But there is not enough proof that these devices are improving patient outcomes such as weight ...

An organ-on-a-chip device that models heart disease

January 2, 2018
When studying diseases or testing potential drug therapies, researchers usually turn to cultured cells on Petri dishes or experiments with lab animals, but recently, researchers have been developing a different approach: ...

Scientists have created a device for remote diagnosis of heart condition

January 12, 2018
Researchers at the National Research Lobachevsky University of Nizhny Novgorod (UNN) have developed a software and hardware system to remotely assess deviations in heart activity and identify cardiovascular diseases at an ...

Understanding and treating long QT syndrome

January 4, 2018
DEAR MAYO CLINIC: I recently read that long QT syndrome is quite common. What is it, and how is it diagnosed? I have read that fainting may be one sign of the disorder. Can long QT syndrome be treated?

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.