Epilepsy marked by neural 'hub' network

March 25, 2008

An increased number of neuron “hubs” in the epileptic brain may be the root cause for the seizures that characterize the disorder, according to a UC Irvine study.

Researchers Robert Morgan and Ivan Soltesz with the Department of Anatomy and Neurobiology identified that these hubs – a small number of highly connected neurons – are formed in the hippocampus during the transition from a healthy brain to an epileptic one. The increased number of connections among these hubs, they found, circulate and amplify signals to such a degree that they overwhelm brain networks, leading to epileptic seizures.

The study appears this week in the online early edition of the Proceedings of the National Academy of Sciences.

“The structure of the epileptic brain differs substantially from that of a healthy one, and our discovery of this hub network offers insight into how epilepsy may develop,” Morgan said. “By establishing therapeutic measures that can selectively target these hub cells, we may be able to create a treatment for epilepsy.”

The researchers used a computer model of a moderately injured hippocampus – the brain region involved in many forms of epilepsy – to create the signaling networks that mimic an epileptic brain, and they found that one featuring a greater number of neuronal hubs promoted the onset of seizure.

By comparing this model with previous animal model studies of epilepsy, they identified these hubs as the network conduits for seizures. Soltesz said that previous studies revealed the existence of these hubs but did not define their role.

“This study is a great example of integrating data from biomedical informatics with basic and clinical research to advance the effort to understand and potentially treat disease and disorders like epilepsy,” added Soltesz, who is chair of the anatomy and neurobiology department and a member of UC Irvine’s Epilepsy Research Center.

Epilepsy affects more than 2 million individuals of all ages in the U.S. alone and at least 50 million worldwide. It is characterized by the occurrence of spontaneous, unpredictable seizures, which can interfere with daily life, be dangerous, and lead to death of some brain cells. While much information is available about the abnormal communication of neuronal networks in epilepsy, the basic mechanisms, involving both genetic and acquired elements, are not fully understood.

Source: University of California - Irvine

Explore further: Personalised epilepsy seizure prediction a possibility with AI

Related Stories

Personalised epilepsy seizure prediction a possibility with AI

December 5, 2017
The idea of personalised seizure prediction for epilepsy is closer to becoming a reality thanks to new research published today by the University of Melbourne and IBM Research-Australia.

Simulating a brain-cooling treatment that could one day ease epilepsy

October 5, 2017
Using computer simulation techniques, scientists have gained new insights into the mechanism by which lowering the temperature of specific brain regions could potentially treat epileptic seizures. The results are published ...

Researchers discover eight new epilepsy genes

November 6, 2017
Approximately 30 per cent of patients with epilepsy do not respond to anti-epileptic drugs. In these cases, all neurologists can do is attempt to find the right combination of medication through trial and error. A treatment ...

Multi-site study will examine CBT for traumatic brain injury-induced seizures

October 25, 2017
Seizures are a common result of traumatic brain injury, especially in military veterans. A new study funded by the DOD, Congressionally Directed Medical Research Programs, and conducted in Providence RI and Birmingham AL ...

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Brain-machine interfaces to treat neurological disease

October 18, 2017
Since the 19th century at least, humans have wondered what could be accomplished by linking our brains – smart and flexible but prone to disease and disarray – directly to technology in all its cold, hard precision. Writers ...

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Study confirms link between the number of older brothers and increased odds of being homosexual

December 12, 2017
Groundbreaking research led by a team from Brock University has further confirmed that sexual orientation for men is likely determined in the womb.

Potassium is critical to circadian rhythms in human red blood cells

December 12, 2017
An innovative new study from the University of Surrey and Cambridge's MRC Laboratory of Molecular Biology, published in the prestigious journal Nature Communications, has uncovered the secrets of the circadian rhythms in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.