Motor neuron disease and toxic substances: Possible link?

March 20, 2008

Motor neuron disease is a rare, devastating illness in which nerve cells that carry brain signals to muscles gradually deteriorate. One form of it, Lou Gehrig’s disease or ALS (amyotrophic lateral sclerosis), is familiar to the public in the lives of scientist Stephen Hawking and Morrie Schwartz, about whom Mitch Albom’s “Tuesdays with Morrie” was written.

For most MND patients, the cause is unknown. Figuring out why these people develop the disease, which causes muscles to weaken, atrophy and cease to function, is an important step in developing therapies to treat or prevent motor neuron disease.

Now a team of University of Michigan scientists has gotten a step closer:

-- They have discovered mutations in one key gene (neuropathy target esterase, or NTE) that cause a previously unknown type of inherited motor neuron disease.
-- The discovery paves the way for better diagnosis and research on treatments.
-- Most intriguing, the scientists found the mutations caused changes in a protein already known to be involved when people develop neurologic disorders as a result of exposure to toxic organophosphates—chemicals commonly used in solvents and insecticides and also as “nerve gas” agents. This discovery points to a new lead in the search to understand MND.

“We speculate there may be gene-environment interactions that cause some forms of motor neuron disease,” says John K. Fink, M.D., professor of neurology at the U-M Medical School and senior author of the new study, which appears in the March issue of the American Journal of Human Genetics. He also is a researcher at the VA Ann Arbor Healthcare System.

“Our findings support the possibility that toxic organophosphates contribute to motor neuron disease in genetically vulnerable people,” says Fink. He believes the results suggest that altered activity of the gene found in patients in the study may also contribute to other motor neuron disorders, possibly including ALS. Motor neuron disease affects five per 100,000 people.

The findings are an exciting first step in uncovering a possible link between the environment and motor neuron disease, says Shirley Rainier, a research assistant professor at the U-M Department of Neurology and the first author of the study. “Why does one person in a family get it, and another doesn’t?”

Piecing together a puzzle

In the 1930s, an estimated 50,000 people in the U.S. became lame or otherwise neurologically affected by neurotoxic organophosphates when they drank a contaminated batch of “ginger jake,” an alcohol-containing potion that was legal during Prohibition.

Ginger jake suppliers substituted a lubricating oil for the oil usually used, castor bean oil, when castor bean prices went up. A 2003 article in the New Yorker detailed the sad results, which led bands like the Mississippi Sheiks to write songs about the “ginger jake blues.”

More recently, there have been incidents in Fiji, India and Africa when accidental consumption of oils containing neurotoxic organophosphates (instead of cooking oil) caused death or nerve damage for tens of thousands of people. Although scientists don’t yet know the exact manner in which toxic organophosphate exposure leads to progressive and permanent nerve damage, they have learned that this process involves disturbance of an enzyme, NTE, contained within nerves.

Fink examined members of two families who had progressive weakness and spasticity (tightness) in their legs, as well as muscle atrophy in their hands, shins and feet. James Albers, M.D., Ph.D., a U-M professor of neurology and an expert in neuromuscular disorders, studied nerve and motor function. Rainier performed genetic studies and determined that the gene for the condition was on a region of chromosome 19.

Mark Leppert, Ph.D., co-chair of human genetics at the University of Utah, and his team performed genetic analysis that confirmed this location and excluded other areas in the genome. Among the many genes in this region of chromosome 19, one gene stood out as particularly likely: the gene that encodes for NTE. Because of its known role in organophosphate-induced neurological disease, the NTE gene was considered an important candidate gene and was studied immediately.

Analysis showed that the affected people in each family had NTE gene mutations. These mutations altered a critical part of the NTE protein called the esterase domain. Fink has named the inherited condition “NTE motor neuron disease.” It begins in childhood and progresses slowly, with symptoms of weakness and spasticity in the legs and muscle atrophy in the hands and lower legs.

Next, Fink and his team want to learn if mutations in the NTE gene happen in other types of motor neuron disease such as ALS, and if the mutations make a person more vulnerable to neurological damage from organophosphate exposure. Fink’s lab is currently using fruit flies as a model to study the NTE mutations, with the goal of finding treatments for people with motor neuron disease.

Source: University of Michigan

Explore further: New player in Alzheimer's disease pathogenesis identified

Related Stories

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...

Discovery of a promising medication for amyotrophic lateral sclerosis

November 16, 2017
Researchers from the University of Montréal Hospital Research Centre (CRCHUM) and the Cumming School of Medicine (CSM) at the University of Calgary have discovered a medication that could make it possible to treat individuals ...

A pathogenic mechanism in motoneuron disease

November 2, 2017
Motor neurons are the nerves that send impulses to the muscles to generate movement. Damage of these neurons can cause very diverse diseases, for example spinal muscular atrophy in children or adult amyotrophic lateral sclerosis.

High-speed locomotion neurons found in the brainstem

October 23, 2017
Think of taking a casual stroll on a sunny Sunday afternoon or running at full speed to catch a bus for work on Monday morning as two extremes. Both forms of locomotion entail a perfect interplay between arms and legs, yet ...

Deadly combination in neurodegenerative diseases revealed

November 13, 2017
Neurodegenerative diseases are incurable and debilitating conditions that result in progressive degeneration and death of nerve cells, which leads to problems with movement or mental functioning. Examples include Alzheimer's, ...

How to control traffic on cellular highways

November 9, 2017
Inside cells, protein "motors" act like trucks on tiny cellular highways to deliver life-sustaining cargoes.

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.