Neurons hard wired to tell left from right

March 31, 2008

It's well known that the left and right sides of the brain differ in many animal species and this is thought to influence cognitive performance and social behaviour. For instance, in humans, the left half of the brain is concerned with language processing whereas the right side is better at comprehending musical melody.

Now researchers from UCL publishing their work in the open access journal Neural Development have pinpointed for the first time the left/right differences in how brains are wired at the level of individual cells. To do this, a research team led by Stephen Wilson looked at left and right-sided neurons (nerve cells) in a part of the brain called the habenula.

By causing habenular neurons to produce a bright green fluorescent protein they saw that they form remarkable "spiral-shaped" axons, the long nerve fibres that act as the nervous system's transmission lines.

"It's clear that the left and right halves of the brain process different types of information but almost nothing is known about the differences in the brain's circuitry which achieve this" says Wilson. "One possibility is that totally different types of neuron might be found on the left and right. Alternatively, both sides could contain the same building blocks but put them together in different ways".

The researchers saw that there are two types of habenular neuron and both types can be found on both left and right sides. However, whilst most left-sided cells have spiral axons shaped into a domed crown, such neurons are not very common on the right. Instead, most right-sided cells form flat, shallow spirals, and these are formed only occasionally on the left.

"In the same way that an engineer can make different electronic circuits from the same set of electronic components, so the left and right halves of the brain use the same types of neuron but in different combinations" explains Isaac Bianco, the student who did this work as part of his PhD studies.

The left and right habenular circuits both connect to the same part of the brain and the researchers found that this target can either combine signals from the left and right or handle them independently.

"Even though language is processed largely on the left side of the human brain, people don't speak with only one half of their mouth. The brain must contain circuits which take information from the left or right and then send it on to targets on both sides of the body" says Wilson.

Source: BioMed Central

Explore further: My cancer is in remission – does this mean I'm cured?

Related Stories

My cancer is in remission – does this mean I'm cured?

May 18, 2018
So you've been through cancer treatment and your doctor has called you in for "some good news". Satisfied, she tells you your cancer is "in remission."

MDMA opens door for PTSD patients to work through trauma

May 16, 2018
When lasting trauma is caused by callous acts of violence, the key to recovery can be making meaning out of meaninglessness.

Brain stimulation reduces suicidal thinking in people with hard-to-treat depression

May 3, 2018
A specific kind of brain stimulation is effective in reducing suicidal thinking in a significant portion of people with hard-to-treat depression, according to a new CAMH study published in The Journal of Clinical Psychiatry. ...

Neuroscience is unlocking mysteries of the teenage brain

April 30, 2018
How would you describe an average teenager? For most people, the following characteristics might come to mind: moody, impulsive, risk taking, likely to succumb to peer pressure.

Decoding the brain's learning machine

May 3, 2018
In studies with monkeys, Johns Hopkins researchers report that they have uncovered significant new details about how the cerebellum—the "learning machine" of the mammalian brain—makes predictions and learns from its mistakes, ...

Electrical nerve stimulation could help patients regain motor functions sooner

May 2, 2018
Researchers at The Ohio State University Wexner Medical Center are among the first in the world studying how a specific type of neurostimulator can improve rehabilitation for stroke patients.

Recommended for you

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

Receptor proteins that respond to nicotine may help fat cells burn energy

May 21, 2018
The same proteins that moderate nicotine dependence in the brain may be involved in regulating metabolism by acting directly on certain types of fat cells, new research from the University of Michigan Life Sciences Institute ...

Atomic-level study reveals why rare disorder causes sudden paralysis

May 21, 2018
A rare genetic disorder in which people are suddenly overcome with profound muscle weakness is caused by a hole in a membrane protein that allows sodium ions to leak across cell membranes, researchers at the University of ...

New era for blood transfusions through genome sequencing

May 18, 2018
Most people are familiar with A, B, AB and O blood types, but there are hundreds of additional blood group "antigens" on red blood cells—substances that can trigger the body's immune response—that differ from person to ...

Robots grow mini-organs from human stem cells

May 17, 2018
An automated system that uses robots has been designed to rapidly produce human mini-organs derived from stem cells. Researchers at the University of Washington School of Medicine in Seattle developed the new system.

Scientists uncover a new face of a famous protein, SWI2/SNF2 ATPase

May 17, 2018
A team of Texas A&M and Texas A&M AgriLife Research scientists now have a deeper understanding of a large switch/sucrose non-fermentable (SWI/SNF) protein complex that plays a pivotal role in plant and human gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.