Researchers discover novel way to develop tumor vaccines

March 2, 2008

Researchers at the University of Southern California (USC) have uncovered a new way to develop more effective tumor vaccines by turning off the suppression function of regulatory T cells. The results of the study, titled “A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression,” will be published in Nature Medicine on March 2, 2008.

“Under normal circumstances, regulatory T cells inhibit the immune system to attack its own cells and tissues to prevent autoimmune diseases. Cancer cells take advantage of regulatory T cells' suppressor ability, recruiting them to keep the immune system at bay or disabling the immune system’s attack provoked by tumor vaccines.” says Si-Yi Chen, M.D., Ph.D., professor of immunology and molecular microbiology at the USC/Norris Comprehensive Cancer Center and the Keck School of Medicine of USC.

“Our study provides a new vaccination strategy to overcome the regulatory T cells’ immune suppression while avoiding non-specific overactivation of autoreactive T cells and pathological autoimmune toxicities.”

The study identified a new molecular player called A20, an enzyme that restricts inflammatory signal transduction in dendritic cells. When it is inhibited, the dendritic cells overproduce an array of cytokines and co-stimulatory molecules that triggers unusually strong immune responses that cannot be suppressed by regulatory T cells. The resulting hyperactivated immune responses triggered by A20-deficient dendritic cells are capable of destroying various types of tumors that are resistant to current tumor vaccines in mice.

“Through a series of immunological studies, we have identified A20 as an essential antigen presentation attenuator that prevents the overactivation and excessive inflammation of the dendritic cells, which, in turn, restricts the potency of tumor vaccines,” says Chen.

The immune system’s dendritic cells are the guardian cells of the immune systems and play an important role in activating immune responses to recognize and destroy tumor cells. Tumor vaccines have been designed and developed to incite the immune response to cancer cells so that the immune system can attack and destroy cancer cells. However, discovering A20’s role in restricting immune responses has led to a method for blocking tumors from using regulatory T cells for protection.

“Despite intensive efforts, tumor vaccines have been largely ineffective in causing tumor regression in the clinic,” says Chen. “The vaccination approach we developed inhibits the key inhibitor in tumor antigen-loaded dendritic cells to selectively hyperactivate immune responses and to tip the balance from immune suppression in tumor-bearing hosts or cancer patients to effective antitumor immunity.”

This approach is capable of overcoming the regulatory T cells’ suppression mechanism and will allow for a new generation of tumor vaccines to be developed. The next step is to translate these findings into a human clinical trial, says Chen.

Source: University of Southern California

Explore further: When good immune cells turn bad

Related Stories

When good immune cells turn bad

September 21, 2017
Investigators at the Children's Center for Cancer and Blood Diseases at Children's Hospital Los Angeles have identified new findings about an immune cell - called a tumor-associated macrophage - that promotes cancer instead ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

Forgotten strands of DNA initiate the development of immune cells

September 21, 2017
Intricate human physiological features such as the immune system require exquisite formation and timing to develop properly. Genetic elements must be activated at just the right moment, across vast distances of genomic space.

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Poliovirus therapy induces immune responses against cancer

September 20, 2017
An investigational therapy using modified poliovirus to attack cancer tumors appears to unleash the body's own capacity to fight malignancies by activating an inflammation process that counter's the ability of cancer cells ...

Tumor-infiltrating B lymphocytes promote melanoma progression and resistance to therapy

September 19, 2017
In a multi-institutional collaborative study, scientists at The Wistar Institute and the Medical University of Vienna, Austria, have identified the role of tumor-infiltrating or tumor-associated B-cells ("TABs") in melanoma ...

Recommended for you

Image ordering often based on factors other than patient need: study

September 25, 2017
Do you really need that MRI?

How ketogenic diets curb inflammation

September 25, 2017
Ketogenic diets – extreme low-carbohydrate, high-fat regimens that have long been known to benefit epilepsy and other neurological illnesses – may work by lowering inflammation in the brain, according to new research ...

Bone marrow concentrate improves joint transplants

September 25, 2017
Biologic joint restoration using donor tissue instead of traditional metal and plastic may be an option for active patients with joint defects. Although recovery from a biologic joint repair is typically longer than traditional ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
not rated yet Mar 02, 2008
Great news, I really hope it will work in humans, vaccines would be the most elegant way of dealing with tumors by FAR if only they worked!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.