Biomarkers identified for idiopathic pulmonary fibrosis

April 29, 2008

The first evidence of a distinctive protein signature that could help to transform the diagnosis and improve the monitoring of the devastating lung disease idiopathic pulmonary fibrosis (IPF) is being reported by University of Pittsburgh School of Medicine researchers in this month’s edition of PLoS Medicine, an open-access journal of the Public Library of Science.

In the paper, Naftali Kaminski, M.D., director of the Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease in the Division of Pulmonary, Allergy and Critical Medicine at the University of Pittsburgh School of Medicine, and his colleagues describe a unique combination of blood proteins that appears to distinguish IPF patients from normal controls with extraordinary sensitivity and precision.

“Our findings suggest that we may be able to monitor what is happening in the lungs by measuring certain proteins in the peripheral blood,” explains senior author Dr. Kaminski, who also is associate professor of medicine. “More study is needed to confirm whether these biomarkers might be useful as a clinical blood test to detect lung fibrosis. But right now, there is no straightforward test for IPF. The lung is not highly accessible; biopsy procedures carry risk, and while imaging is good, it can’t follow the disease biologically.”

IPF is a degenerative illness distinguished by progressive lung scarring and diminished breathing capacity, typically leading to death within about five years of diagnosis. It is estimated that 5 million people worldwide and 130,000 in the United States are affected by pulmonary fibrosis and about 30,000 people die of the disease every year.

For this study, researchers analyzed the concentrations of 49 proteins in the plasma of 74 patients with IPF and 53 normal controls. A combination of five proteins related to normal tissue breakdown and remodeling and certain disease processes, including arthritis and cancer, was found to be highly indicative of IPF.

Increases in two of the five, matrix metalloproteinases (MMP) 7 and 1, also were observed in tissue and fluid taken from the lungs of IPF patients. Other proteins in the IPF signature are matrix metalloproteinase 8, insulin-like growth factor binding protein 1 and tumor necrosis factor receptor superfamily member 1A.

“These proteins were increased in IPF patients, but not in patients with lung illnesses such as chronic obstructive pulmonary disease,” says Ivan O. Rosas, M.D., first author on the study and assistant professor of medicine, University of Pittsburgh School of Medicine. Elevated MMP1 and MMP7 also distinguished IPF when compared to levels associated with another disease that closely mimics IPF, called subacute/chronic hypersensitivity pneumonia. In particular, increased concentrations of MMP7 “may be indicative of asymptomatic lung disease and perhaps reflect disease progression,” Dr. Rosas says.

“One of the challenges is to know whether a blood protein actually reflects the situation in the lung,” notes Thomas J. Richards, Ph.D., study co-first author and research assistant professor in the Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine. The team evaluated all the genes expressed in IPF-affected lung tissue to determine the proteins in the peripheral blood on which they should focus. Based on their detailed analysis, the team believes that increased levels of these five proteins probably are reflective of the disease.

“IPF can have a slow progression, so drug companies may wait a long time to see whether a particular drug is having any effect,” says Dr. Kaminski. “But a blood biomarker could indicate whether a drug is working earlier. The biomarkers also might be used for risk assessment and for evaluation of disease progression.”

Some known causes of pulmonary fibrosis include occupational and environmental exposure to asbestos, metal dust, farming chemicals and mold, an inflammatory disease called sarcoidosis, radiation, drug reactions, autoimmune disorders and possibly a genetic predisposition, according to the American Lung Association.

Most cases are considered to be idiopathic, or of unknown origin. There is no proven effective therapy for IPF, and most drug interventions are considered experimental. Long-term benefit may be possible with lung transplantation, a radical approach dependent upon a limited number of donated organs.

Source: University of Pittsburgh

Explore further: Researchers find common genetic link in lung ailments

Related Stories

Researchers find common genetic link in lung ailments

October 22, 2018
An international research team led by members of the University of Colorado School of Medicine faculty has identified a genetic connection between rheumatoid arthritis-associated interstitial lung disease and idiopathic pulmonary ...

New guideline aids in diagnosing idiopathic pulmonary fibrosis

August 31, 2018
A new international guideline has been developed to help physicians diagnosis idiopathic pulmonary fibrosis (IPF), a rare and often fatal lung disease whose cause is unknown.

Study reveals new targets to inhibit pulmonary fibrosis

October 5, 2018
In a study out this week in Science Translational Medicine, an international team led by researchers at Vanderbilt University Medical Center sheds new light on the cause of pulmonary fibrosis and demonstrates a way to impede ...

Scientists unlock genetic code of diseased lung cells to find new treatments for IPF

December 8, 2016
Researchers cracked the complete genetic code of individual cells in healthy and diseased human lung tissues to find potential new molecular targets for diagnosing and treating the lethal lung disease Idiopathic Pulmonary ...

Study identifies new molecular target for treating deadly lung disease IPF

April 10, 2018
Scientists searching for a therapy to stop the deadly and mostly untreatable lung disease, idiopathic pulmonary fibrosis (IPF), found a new molecular target that slows or stops the illness in preclinical laboratory tests.

IPF lung disease numbers are rising quickly to become a significant cause of mortality in UK

April 28, 2011
The number of cases of idiopathic pulmonary fibrosis (IPF) has continued to rise significantly in the first decade of the 21st century and could lead to more deaths than ovarian cancer, lymphoma, leukaemia, or kidney cancer, ...

Recommended for you

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.