Biomarkers identified for idiopathic pulmonary fibrosis

April 29, 2008

The first evidence of a distinctive protein signature that could help to transform the diagnosis and improve the monitoring of the devastating lung disease idiopathic pulmonary fibrosis (IPF) is being reported by University of Pittsburgh School of Medicine researchers in this month’s edition of PLoS Medicine, an open-access journal of the Public Library of Science.

In the paper, Naftali Kaminski, M.D., director of the Dorothy P. & Richard P. Simmons Center for Interstitial Lung Disease in the Division of Pulmonary, Allergy and Critical Medicine at the University of Pittsburgh School of Medicine, and his colleagues describe a unique combination of blood proteins that appears to distinguish IPF patients from normal controls with extraordinary sensitivity and precision.

“Our findings suggest that we may be able to monitor what is happening in the lungs by measuring certain proteins in the peripheral blood,” explains senior author Dr. Kaminski, who also is associate professor of medicine. “More study is needed to confirm whether these biomarkers might be useful as a clinical blood test to detect lung fibrosis. But right now, there is no straightforward test for IPF. The lung is not highly accessible; biopsy procedures carry risk, and while imaging is good, it can’t follow the disease biologically.”

IPF is a degenerative illness distinguished by progressive lung scarring and diminished breathing capacity, typically leading to death within about five years of diagnosis. It is estimated that 5 million people worldwide and 130,000 in the United States are affected by pulmonary fibrosis and about 30,000 people die of the disease every year.

For this study, researchers analyzed the concentrations of 49 proteins in the plasma of 74 patients with IPF and 53 normal controls. A combination of five proteins related to normal tissue breakdown and remodeling and certain disease processes, including arthritis and cancer, was found to be highly indicative of IPF.

Increases in two of the five, matrix metalloproteinases (MMP) 7 and 1, also were observed in tissue and fluid taken from the lungs of IPF patients. Other proteins in the IPF signature are matrix metalloproteinase 8, insulin-like growth factor binding protein 1 and tumor necrosis factor receptor superfamily member 1A.

“These proteins were increased in IPF patients, but not in patients with lung illnesses such as chronic obstructive pulmonary disease,” says Ivan O. Rosas, M.D., first author on the study and assistant professor of medicine, University of Pittsburgh School of Medicine. Elevated MMP1 and MMP7 also distinguished IPF when compared to levels associated with another disease that closely mimics IPF, called subacute/chronic hypersensitivity pneumonia. In particular, increased concentrations of MMP7 “may be indicative of asymptomatic lung disease and perhaps reflect disease progression,” Dr. Rosas says.

“One of the challenges is to know whether a blood protein actually reflects the situation in the lung,” notes Thomas J. Richards, Ph.D., study co-first author and research assistant professor in the Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine. The team evaluated all the genes expressed in IPF-affected lung tissue to determine the proteins in the peripheral blood on which they should focus. Based on their detailed analysis, the team believes that increased levels of these five proteins probably are reflective of the disease.

“IPF can have a slow progression, so drug companies may wait a long time to see whether a particular drug is having any effect,” says Dr. Kaminski. “But a blood biomarker could indicate whether a drug is working earlier. The biomarkers also might be used for risk assessment and for evaluation of disease progression.”

Some known causes of pulmonary fibrosis include occupational and environmental exposure to asbestos, metal dust, farming chemicals and mold, an inflammatory disease called sarcoidosis, radiation, drug reactions, autoimmune disorders and possibly a genetic predisposition, according to the American Lung Association.

Most cases are considered to be idiopathic, or of unknown origin. There is no proven effective therapy for IPF, and most drug interventions are considered experimental. Long-term benefit may be possible with lung transplantation, a radical approach dependent upon a limited number of donated organs.

Source: University of Pittsburgh

Explore further: Study tracks therapy to slow idiopathic pulmonary fibrosis

Related Stories

Study tracks therapy to slow idiopathic pulmonary fibrosis

February 5, 2018
Investigators in the Division of Allergy, Pulmonary and Critical Care have launched a pilot study to see if patients with idiopathic pulmonary fibrosis (IPF) can tolerate the addition of a commonly used antiviral drug to ...

Thyroid hormone therapy heals lung fibrosis in animal study

December 4, 2017
Thyroid hormone therapy significantly resolves fibrosis, or scarring, in the lungs of mice, increasing their survival from disease, a Yale-led study shows. These provide a novel insight into the development of pulmonary fibrosis ...

Scientists unlock genetic code of diseased lung cells to find new treatments for IPF

December 8, 2016
Researchers cracked the complete genetic code of individual cells in healthy and diseased human lung tissues to find potential new molecular targets for diagnosing and treating the lethal lung disease Idiopathic Pulmonary ...

IPF lung disease numbers are rising quickly to become a significant cause of mortality in UK

April 28, 2011
The number of cases of idiopathic pulmonary fibrosis (IPF) has continued to rise significantly in the first decade of the 21st century and could lead to more deaths than ovarian cancer, lymphoma, leukaemia, or kidney cancer, ...

First, do no harm: Study finds danger in standard treatment for a serious lung disease

May 20, 2012
A combination of three drugs used worldwide as the standard of care for a serious lung disease puts patients in danger of death or hospitalization, and should not be used together to treat the disease, called idiopathic pulmonary ...

Metabolomics key to identifying disease pathway: Research reveals lactic acid's role in lung disease

January 14, 2013
(Medical Xpress)—Expertise at Pacific Northwest National Laboratory contributed to the understanding of the role of cellular metabolism in the pathogenesis of a currently untreatable lung disease. This research, reported ...

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.