Blood pressure drugs halt pancreatic cancer cell growth, researchers find

April 14, 2008

Researchers at the Kimmel Cancer Center at Thomas Jefferson University in Philadelphia are inching closer to understanding how common blood pressure medications might help prevent the spread of pancreatic cancer. They have found in the laboratory that one type of pressure-lowering drug called an angiotensin receptor blocker inhibits pancreatic cancer cell growth and causes cell death.

In earlier work in the laboratory, Hwyda Arafat, M.D., Ph.D., associate professor of Surgery at Jefferson Medical College, and her team showed that angiotensin receptor blockers may help reduce the development of tumor-feeding blood vessels, a process called angiogenesis. Other studies have linked a lower incidence of cancer with the use of angiotensin blocking therapies. Such drugs, she says, may become part of a novel strategy to control the growth and spread of cancer.

One of these drugs – AT1R (Ang II type 1 receptor) blockers – inhibit the function of the
hormone angiotensin II (Ang II) in the pancreas. The receptor is expressed in pancreatic
cancer cells. Ang II increases the production of VEGF, a vascular factor that promotes blood vessel growth in a number of cancers. High VEGF levels have been correlated with poor cancer prognosis and early recurrence after surgery. Dr. Arafat’s research team has shown that AngII indirectly causes VEGF expression by increasing AT1R expression.

Dr. Arafat’s group explored the effects of blocking AT1R on the pancreatic cancer cell reproductive cycle and programmed cell death, or apoptosis, and the mechanisms involved. It found that blocking AT1R inhibited pancreatic cancer cell growth and promoted cell death. “This happens through inducing the activity of the gene p53, which controls programmed cell death, and also by inhibiting anti-cell death pathways such as those involving the gene bcl-2.” The team reports its findings April 14, 2008 at the annual meeting of the American Association for Cancer Research in San Diego.

The researchers also found that blocking AT1R affects p21, a gene that regulates the cell cycle. “We found that blocking this receptor can cause cell cycle arrest,” she notes.

“This is really exciting because the role of this receptor has never been known,” Dr. Arafat says. “It’s never been connected to cell division or apoptosis. We’re also now further exploring the mechanisms involved. The exciting thing is that this receptor already has so many available pharmaceutical blockers on the market.” Ultimately, the group hopes to be able to test these agents in human trials, she says.

Source: Thomas Jefferson University

Explore further: Study shows how nerves drive prostate cancer

Related Stories

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Researchers find novel mechanism of resistance to anti-cancer drugs

October 17, 2017
The targeted anti-cancer therapies cetuximab and panitumumab are mainstays of treatment for advanced colorectal cancer, the second leading cause of cancer-related deaths in the United States. However, many patients have tumors ...

Gene transcription in virus-specific CD8 T cells differentiates chronic from resolving HCV

October 17, 2017
Massachusetts General Hospital (MGH) investigators have identified differences in gene transcription within key immune cells that may distinguish those individuals infected with the hepatitis C virus (HCV) who develop chronic ...

Drug yields high response rates for lung cancer patients with harsh mutation

October 18, 2017
A targeted therapy resurrected by the Moon Shots Program at The University of Texas MD Anderson Cancer Center has produced unprecedented response rates among patients with metastatic non-small cell lung cancer that carries ...

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

Study reveals complex biology, gender differences, in kidney cancer

October 13, 2017
A new study is believed to be the first to describe the unique role of androgens in kidney cancer, and it suggests that a new approach to treatment, targeting the androgen receptor (AR), is worth further investigation.

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017
Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.