Rare genetic syndrome may hold key to cure for heat stroke

April 3, 2008

A genetic disorder that can cause a fatal rise in body temperature in some patients undergoing general anesthesia may hold the key to a cure for heat stroke, according to research published in the April 4 edition of the journal Cell. The findings further suggest that antioxidants, like those currently being tested to protect the lungs of cystic fibrosis patients, may also protect those genetically prone to suffer heat stroke.

According to the current study authors, all U.S. operating rooms should, but do not always, have a supply of a drug called dantrolene on hand, which causes muscles to relax by a unique mechanism. Dantrolene is a must in the rare cases where patients receiving general anesthesia unexpectedly go into whole-body muscle contractions as part of an inherited condition called malignant hyperthermia (MH).

Occurring in one in about 10,000 adult patients undergoing general anesthesia, and more frequently in children, MH reactions alter the acid content of blood and tissues, increase heart rate, cause muscle rigidity and trigger a rapid rise in body temperature up to 112° F. Kidney failure and potentially fatal heart arrhythmias can result in the worse cases. MH received national news coverage recently because of the unfortunate case of an 18-year-old Florida high school senior, Stephanie Kuleba, whose death was apparently caused by a fatal reaction to anesthesia during corrective surgery.

Researchers are also interested in MH because it may be caused by the same biochemical pathways as heat stroke, a much more common condition that has caused more U.S. deaths than hurricanes, tornadoes, floods and earthquakes (8,000) together since 1979, according to the Centers for Disease Control and Prevention. Given the number of troops currently operating in deserts, the U.S. military has a keen interest in the work. For the first time, researchers at four universities and in the U.S. Army have provided strong evidence that the genetic and protein defects that cause MH also contribute to the development of heat stroke. They have also identified mechanisms by which both conditions may damage cells.

”Along with cardiac abnormalities, heat stroke is a major culprit in unexpected sudden deaths of otherwise fit, young athletes and soldiers,” said Robert T. Dirksen, Ph.D., associate professor of Pharmacology and Physiology at the University of Rochester Medical Center. “With a better knowledge of these mechanisms, we can begin to better diagnose and treat both disorders, and hopefully, save some lives,” said Dirksen, a co-author on the study.

The Perfect Switch

To drive life processes, human cells expend tremendous energy to continually push positively charged calcium ions both out of cells, and into internal calcium storage compartments. This creates charge/calcium gradients across cell membranes, a powerful source of potential energy. Cells harness this energy to send nerve signals, regulate genes and trigger muscle contraction. Muscle movement in the body is regulated by precisely controlled increases in calcium ion concentration acting as a biochemical switch.

Going into the current study, the team knew from the literature that a genetic mutation – a small, random mistake in the genetic code – causes MH susceptibility in humans. They also knew that the mutation was located in a gene that codes for ryanodine receptor proteins. These calcium channels provide a pathway for calcium in the internal storage compartment, the sarcoplasmic reticulum, to be released into the muscle cell to cause contraction.

For the current project, researchers genetically engineered mice with a mutation seen in human MH disease. They found that these mice indeed exhibited full-body contractions that lead to death during exposure to anesthesia (e.g. halothane), a hallmark of malignant hyperthermia. Unexpectedly, the mice were also found to experience similar, life-threatening episodes during brief exposure to environmental heat stress (105F). These results establish a surprising connection between altered ryanodine receptor activity and heat stroke, with the mutated calcium channel being more likely to exhibit uncontrolled calcium release and muscle contraction in response to heat.

Furthermore, the team demonstrated that increased calcium ion leakage from mutated ryanodine receptors during heat stress caused a profound increase in free radical production. Also called reactive oxygen species (ROS) and nitrogen species (RNS), free radicals are highly reactive molecules that can destroy sensitive cell components and hasten cell death. Free radicals are largely created as a side effect when structures within all human cells, the mitochondria, use oxygen to turn food into an energy-storing molecule called adenosine triphosphate (ATP). To drive ATP production, electrons are passed along a chain of enzymes within the mitochondria. When some of these electrons are not passed along effectively, they combine with oxygen and nitrogen to form free radicals. Disease processes tend to create far higher levels of free radicals than the body’s naturally occurring antioxidants can mop up.

In the current study, results showed that free radical production in muscle nearly doubled in the genetically altered mice, and that it rose even more during heat stress. Researchers also found that the increase in free radicals results from increased calcium leak from the mutated calcium channels in the sarcoplasmic reticulum, potentially driving increased ROS/RNS production by nearby mitochondria. In addition, the increase in ROS/RNS levels were in turn found to travel back to, and further alter, mutated ryanodine receptor calcium channels.

This “vicious feed-forward cycle” caused the calcium leak to further worsen, the calcium channels to become extremely heat sensitive and muscles to contract uncontrollably in response to both anesthesia and heat. Uncontrolled contractions can break apart muscle cells, releasing toxic cellular metabolites into the bloodstream that ultimately trigger kidney failure and throw the heartbeat out of rhythm. Even in the absence of such acute events, increased oxidative stress in the muscle of mutant mice over the long term was also found to distort the shape of mitochondria and weaken muscle contraction (myopathy).

Most importantly, simply including an antioxidant, N-acetylcysteine (NAC), in the animal’s water supply resulted in a marked reduction in sensitivity to heat stress, improved mitochondrial health and restoration of muscle function in aged mice. NAC is currently in phase 2 human clinical trials for patients with cystic fibrosis, where disease creates free radicals that damage lung tissue.

Researchers from the Medical Center, the Baylor College of Medicine and CeSI Centro Scienze dell'Invecchiamento Universit degli Studi G in Italy collaborated on the paper. Along with Dirksen, the Rochester effort was led by Ann Rossi and Sanjeewa Goonasekera, Ph.D. in the Department of Pharmacology and Physiology. Susan L. Hamilton, Ph.D., chair of the Department of Molecular Physiology & Biophysics at Baylor, was the corresponding author. Although not authoring institutions on the current paper, the Uniform Services University of the U.S. Army and Harvard University also participated in the work through a related grant from the National Institutes of Health.

“We found that destructive cycles of calcium leakage and excess free radical production damage mitochondria and contribute to the deterioration of muscle function in aged animals,” Dirksen said. “In successfully constructing the first mouse model of human MH, we unwittingly generated the first animal model of heat stroke that will undoubtedly be tremendously useful in better understanding these disorders and in accelerating the design of safe and effective treatments for both conditions.”

“Malignant hyperthermia syndrome, a potentially fatal inherited disorder, is most often ‘triggered’ by certain gas anesthetics and the paralyzing drug succinylcholine,” said Henry Rosenberg, M.D., president of the Malignant Hyperthermia Society of the United States and professor of anesthesiology at Mount Sinai School of Medicine, N.Y. “In the naturally occurring animal model, certain breeds of swine, the syndrome is also precipitated by environmental conditions. It has long been debated as to whether some cases of heat stroke and exercise-induced muscle breakdown in humans are related to malignant hyperthermia as well.

This study defines a biochemical pathway that might very well clarify the relationship between anesthesia-induced malignant hyperthermia and heat stroke. This elegant study, using modern molecular techniques, opens new avenues for the study of the not-uncommon problem of heat stroke and exercise-induced muscle breakdown and the risk for malignant hyperthermia.”

Source: University of Rochester

Explore further: Researchers find protein induces non-shivering muscle heat generation

Related Stories

Researchers find protein induces non-shivering muscle heat generation

September 10, 2012
(Medical Xpress)—A team of researchers working in Ohio has found evidence that suggests that the protein sarcolipin, normally a calcium regulator pump, also serves as a means of causing muscles to generate body heat independent ...

Treatment hope for Duchenne muscular dystrophy

April 4, 2012
An international team led by the University of Melbourne Australia, has found that increasing a specific protein in muscles could help treat Duchenne muscular dystrophy (DMD), a severe and progressive muscle wasting disease ...

Exercise in a pill may protect against extreme heat sensitivity

January 8, 2012
We've all seen the story in the news before. Whether it's the death of a physically fit high school athlete at football training camp in August, or of an elderly woman gardening in the middle of the day in July, heat stroke ...

Viral Vectors delivery new calcium pumps for ailing hearts

May 1, 2013
(Medical Xpress)—A fresh round of trials to evaluate gene therapy for the heart is set to begin in a couple of weeks. The British Heart Foundation will be sponsoring the study, which seeks to replace defective calcium pump ...

Tweaking energy consumption to combat muscle wasting and obesity

December 16, 2013
Using a new technique to evaluate working muscles in mice, researchers have uncovered physiological mechanisms that could lead to new strategies for combating metabolism-related disorders like muscle wasting and obesity. ...

Extreme heat exposure linked to firefighter heart attacks

April 3, 2017
Exposure to extreme heat and physical exertion during firefighting may trigger the formation of blood clots and impair blood vessel function, changes associated with increased risk of heart attack, according to new research ...

Recommended for you

Genome editing reveals role of gene important for human embryo development

September 20, 2017
Researchers have used genome editing technology to reveal the role of a key gene in human embryos in the first few days of development. This is the first time that genome editing has been used to study gene function in human ...

A piece of the puzzle: Eight autism-related mutations in one gene

September 19, 2017
Scientists have identified a hotspot for autism-related mutations in a single gene.

Scientists identify key regulator of male fertility

September 19, 2017
When it comes to male reproductive fertility, timing is everything. Now scientists are finding new details on how disruption of this timing may contribute to male infertility or congenital illness.

New assay leads to step toward gene therapy for deaf patients

September 18, 2017
Scientists at Oregon State University have taken an important step toward gene therapy for deaf patients by developing a way to better study a large protein essential for hearing and finding a truncated version of it.

Biologists identify gene involved in kidney-related birth defects

September 18, 2017
A team led by University of Iowa researchers has identified a gene linked to rare, often fatal kidney-related birth defects.

Genomic recycling: Ancestral genes take on new roles

September 18, 2017
One often hears about the multitude of genes we have in common with chimps, birds or other living creatures, but such comparisons are sometimes misleading. The shared percentage usually refers only to genes that encode instructions ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.