Reconstructing mandibular defects with bioengineered tooth and bone

April 6, 2008

Current strategies for jaw reconstruction require multiple procedures, first to repair the bone defect to offer sufficient support, and then to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired esthetic and functional repair can be achieved only when both steps are successful.

Although the patient’s quality of life can be improved significantly, the prognosis is often unpredictable, especially in young patients, whose jaws continue to grow, while the implant remains fixed. The ability to bioengineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes, and also reduce patient suffering.

Under the guidance of Dr. Pamela C. Yelick, a research team at Tufts University (Boston, MA) has examined the feasibility of simultaneously reconstructing both teeth and bone. In 2002, the group first reported the regeneration of tooth crowns, from cultured tooth bud cells seeded onto biodegradable scaffolds and implanted into rat hosts.

The morphology of the developing tissue-engineered tooth crowns closely resembled that of naturally formed teeth. Next, they generated a hybrid tooth-bone construct, by combining a bone-marrow-derived stem-cell-seeded scaffold with the previously used tooth model, implanted and grown in the omenta (tissues connecting abdominal structures) of rat hosts.

In this case, the formation of not only the tooth crowns but also tooth root and surrounding alveolar bone was observed. However, since the omentum offers an environment quite distinct from that of the natural tooth site, the jawbone, the team examined hybrid tooth-bone construct development using third molar tooth bud cells and bone marrow derived from, and implanted back into, the same minipig.

Their results showed the formation of organized bioengineered dental tissues closely resembling those of naturally formed teeth, including dentin, enamel, pulp, and periodontal ligament, after 12 weeks of implantation. Further analyses confirmed the expression of tooth- and bone-specific markers on the bioengineered tissues. In addition, they observed novel mineralized tissue interface formation, including enamel/bone and dentin/bone interfaces.

These results demonstrate the feasibility and therapeutic potential for regenerating tooth and bone from autologous stem cells, for craniofacial reconstructions in humans. This model is currently being modified to improve alveolar bone formation, regenerated dental tissue orientation, tooth root development, and tooth eruption.

Source: International & American Association for Dental Research

Explore further: Severe gum disease strongly predicts higher mortality in cirrhosis

Related Stories

Biological tooth replacement—a step closer

March 9, 2013

Scientists have developed a new method of replacing missing teeth with a bioengineered material generated from a person's own gum cells. Current implant-based methods of whole tooth replacement fail to reproduce a natural ...

Study blocks inflammatory bone loss in gum disease

September 30, 2015

Periodontitis, a severe form of gum disease, doesn't just cause soft-tissue inflammation and bleeding. It also destroys the bone that supports the teeth. If it progresses unchecked, it can lead to tooth loss and is even associated ...

Smart material can heal bone

May 14, 2012

How do get something to grow out of nothing? This is what the polymer chemistry team at the Department of Chemistry at Ångström Laboratory is discovering at great speed. Their findings mean that we soon will not ...

Woman's tea addiction led to loss of teeth, bone problems

March 20, 2013

(HealthDay)—Here's a cautionary tale about the value of moderation. A case study reported in the March 21 issue of the New England Journal of Medicine shows how habitually drinking an extreme form of highly concentrated ...

Recommended for you

The ethics of tracking athletes' biometric data

January 18, 2017

(Medical Xpress)—Whether it is a FitBit or a heart rate monitor, biometric technologies have become household devices. Professional sports leagues use some of the most technologically advanced biodata tracking systems to ...

Study shows blood products unaffected by drone trips

December 7, 2016

In what is believed to be the first proof-of-concept study of its kind, Johns Hopkins researchers have determined that large bags of blood products, such as those transfused into patients every day, can maintain temperature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.